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Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise asymptotically almost negatively associated
random variables. Some sufficient conditions for complete convergence for arrays of rowwise
asymptotically almost negatively associated random variables are presented without assumptions
of identical distribution. As an application, the Marcinkiewicz-Zygmund type strong law of large
numbers for weighted sums of asymptotically almost negatively associated random variables is
obtained.

1. Introduction

The concept of complete convergence was introduced by Hsu and Robbins [1] as follows.
A sequence of random variables {Un, n ≥ 1} is said to converge completely to a constant C if
∑∞

n=1P(|Un − C| > ε) < ∞ for all ε > 0. In view of the Borel-Cantelli lemma, this implies
that Un → C almost surely (a.s.). The converse is true if the {Un, n ≥ 1} are independent.
Hsu and Robbins [1] proved that the sequence of arithmetic means of independent and
identically distributed (i.i.d.) random variables converges completely to the expected value
if the variance of the summands is finite. Since then many authors studied the complete
convergence for partial sums and weighted sums of random variables. The main purpose
of the present investigation is to provide the complete convergence results for weighted
sums of asymptotically almost negatively associated random variables and arrays of rowwise
asymptotically almost negatively associated random variables.

Firstly, let us recall the definitions of negatively associated and asymptotically almost
negatively associated random variables.
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Definition 1.1. A finite collection of random variables X1, X2, . . . , Xn is said to be negatively
associated (NA, in short) if for every pair of disjoint subsets A1, A2 of {1, 2, . . . , n},

Cov
{
f(Xi : i ∈ A1), g

(
Xj : j ∈ A2

)} ≤ 0, (1.1)

whenever f and g are coordinatewise nondecreasing such that this covariance exists. An
infinite sequence {Xn, n ≥ 1} is NA if every finite subcollection is negatively associated.

An array of random variables {Xni, i ≥ 1, n ≥ 1} is called rowwise NA random
variables if, for every n ≥ 1, {Xni, i ≥ 1} is a sequence of NA random variables.

The concept of negative association was introduced by Joag-Dev and Proschan [2]. By
inspecting the proof of maximal inequality for the NA random variables in Matula [3], one
also can allow negative correlations provided they are small. Primarily motivated by this,
Chandra and Ghosal [4, 5] introduced the following dependence.

Definition 1.2. A sequence {Xn, n ≥ 1} of random variables is called asymptotically almost
negatively associated (AANA, in short) if there exists a nonnegative sequence q(n) → 0 as
n → ∞ such that

Cov
(
f(Xn), g(Xn+1, Xn+2, . . . , Xn+k)

) ≤ q(n)
[
Var

(
f(Xn)

)
Var

(
g(Xn+1, Xn+2, . . . , Xn+k)

)]1/2
,

(1.2)

for all n, k ≥ 1 and for all coordinatewise nondecreasing continuous functions f and g
whenever the variances exist.

An array of random variables {Xni, i ≥ 1, n ≥ 1} is called rowwise AANA random
variables if, for every n ≥ 1, {Xni, i ≥ 1} is a sequence of AANA random variables.

The family of AANA sequence contains NA (in particular, independent) sequences
(with q(n) = 0, n ≥ 1) and some more sequences of random variables which are not much
deviated from being negatively associated. An example of an AANA sequence which is not
NA was constructed by Chandra and Ghosal [4].

Since the concept of AANA sequence was introduced by Chandra and Ghosal [4],
many applications have been found. See, for example, Chandra and Ghosal [4] derived
the Kolmogorov type inequality and the strong law of large numbers of Marcinkiewicz-
Zygmund, Chandra and Ghosal [5] obtained the almost sure convergence of weighted
averages, Ko et al. [6] studied the Hájek-Rényi type inequality, Wang et al. [7] established the
law of the iterated logarithm for product sums, Yuan and An [8] established some Rosenthal
type inequalities for maximum partial sums of AANA sequence, andWang et al. [9] obtained
some strong growth rate and the integrability of supremum for the partial sums of AANA
random variables, and so forth.

Our goal in this paper is to study the complete convergence for arrays of
rowwise AANA random variables under some moment conditions. As an application,
the Marcinkiewicz-Zygmund type strong law of large numbers for weighted sums of
AANA random variables is obtained. We will give some sufficient conditions for complete
convergence for an array of rowwise AANA random variables without assumption of
identical distribution. The results presented in this paper are obtained by using the truncated
method and the classical maximal type inequality of AANA random variables (Lemma 1.5
below).
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Throughout the paper, let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise AANA random
variables with the mixing coefficients {q(i), i ≥ 1} in each row. For p > 1, let q .= p/(p − 1)
be the dual number of p. Let I(A) be the indicator function of the set A. C denotes a positive
constant which may be different in various places and an = O(bn) stands for an ≤ Cbn.

Definition 1.3. An array of random variables {Xni, i ≥ 1, n ≥ 1} is said to be stochastically
dominated by a random variable X if there exists a positive constant C such that

P(|Xni| > x) ≤ CP(|X| > x) (1.3)

for all x ≥ 0, i ≥ 1 and n ≥ 1.

The following lemmas are useful for the proofs of the main results.

Lemma 1.4 (cf. Yuan and An [8, Lemma 2.1]). Let {Xn, n ≥ 1} be a sequence of AANA
random variables with mixing coefficients {q(n), n ≥ 1}, let f1, f2, . . . be all nondecreasing (or all
nonincreasing) functions, then {fn(Xn), n ≥ 1} is still a sequence of AANA random variables with
mixing coefficients {q(n), n ≥ 1}.

Lemma 1.5 (cf. Yuan and An [8, Theorem 2.1]). Let {Xn, n ≥ 1} be a sequence of AANA random
variables with EXi = 0 for all i ≥ 1 and p ∈ (3 · 2k−1, 4 · 2k−1], where integer number k ≥ 1. If
∑∞

n=1q
q/p(n) < ∞, then there exists a positive constant Dp depending only on p such that for all

n ≥ 1,

E

(

max
1≤j≤n

∣
∣
∣
∑j

i=1
Xi

∣
∣
∣
p
)

≤ Dp

{∑n

i=1
E|Xi|p +

(∑n

i=1
EX2

i

)p/2
}

. (1.4)

Lemma 1.6. Let {Xn, n ≥ 1} be a sequence of random variables which is stochastically dominated by
a random variable X. For any α > 0 and b > 0, the following two statements hold:

E|Xn|αI(|Xn| ≤ b) ≤ C1
[
E|X|αI(|X| ≤ b) + bαP(|X| > b)

]
, (1.5)

E|Xn|αI(|Xn| > b) ≤ C2E|X|αI(|X| > b), (1.6)

where C1 and C2 are positive constants.

2. Main Results

Let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise AANA random variables with the mixing
coefficients {q(i), i ≥ 1} in each row, and let {ani : i ≥ 1, n ≥ 1} be an array of real numbers. Let
{Xi, i ≥ 1} be a sequence of AANA random variables with the mixing coefficients {q(i), i ≥ 1}
and let {ai, i ≥ 1} be a sequence of real numbers. We consider the following conditions.

(H1) There exist some δ with 0 < δ < 1 and some α with 0 < α < 2 such that
∑n

i=1|ani|α =
O(nδ), and assume further that EXni = 0 if 1 < α < 2.

(H2) There exists some p ∈ (3 · 2k−1, 4 · 2k−1] such that
∑∞

i=1q
q/p(i) < ∞, where integer

number k ≥ 1.
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(H3) For some h > 0 and γ > 0,

E exp
(
h|X|γ) < ∞. (2.1)

(H4) There exist some δ with 0 < δ < 1 and some α with 0 < α < 2 such that
∑n

i=1|ai|α =
O(nδ), and assume further that EXn = 0 if 1 < α < 2.

(H5) There exists some α with 0 < α < 2 such that
∑n

i=1|ani|α = O(n) and assume further
that EXni = 0 if 1 < α < 2.

(H6) There exists some α with 0 < α < 2 such that
∑n

i=1|ai|α = O(n) and assume further
that EXn = 0 if 1 < α < 2.

Our main results are as follows.

Theorem 2.1. Let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise AANA random variables which is
stochastically dominated by a random variable X, and let {ani : i ≥ 1, n ≥ 1} be an array of real
numbers. Suppose that the conditions (H1)–(H3) are satisfied. Then, for any ε > 0,

∑∞
n=1

nsα−2P
(

max
1≤j≤n

∣
∣
∣
∑j

i=1
aniXni

∣
∣
∣ > εbn

)

< ∞, (2.2)

where s ≥ 1/α and bn
.= n1/αlog1/γn.

Proof. For fixed n ≥ 1, define

X
(n)
i = −bnI(Xni < −bn) +XniI(|Xni| ≤ bn) + bnI(Xni > bn), i ≥ 1,

T
(n)
j =

∑j

i=1
ani

(
X

(n)
i − EX

(n)
i

)
, j = 1, 2, . . . , n.

(2.3)

It is easy to check that for any ε > 0,

(

max
1≤j≤n

∣
∣
∣
∑j

i=1
aniXni

∣
∣
∣ > εbn

)

⊂
(

max
1≤i≤n

|Xni| > bn

)⋃(

max
1≤j≤n

∣
∣
∣
∑j

i=1
aniX

(n)
i

∣
∣
∣ > εbn

)

, (2.4)

which implies that

P

(

max
1≤j≤n

∣
∣
∣
∑j

i=1
aniXni

∣
∣
∣ > εbn

)

≤ P

(

max
1≤i≤n

|Xni| > bn

)

+ P

(

max
1≤j≤n

∣
∣
∣
∑j

i=1
aniX

(n)
i

∣
∣
∣ > εbn

)

≤
∑n

i=1
P(|Xni| > bn) + P

(

max
1≤j≤n

∣
∣
∣T

(n)
j

∣
∣
∣ > εbn −max

1≤j≤n

∣
∣
∣
∑j

i=1
aniEX

(n)
i

∣
∣
∣

)

.

(2.5)
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Firstly, we will show that

b−1n max
1≤j≤n

∣
∣
∣
∑j

i=1
aniEX

(n)
i

∣
∣
∣ −→ 0, as n −→ ∞. (2.6)

By
∑n

i=1|ani|α = O(nδ) and Hölder’s inequality, we have for 1 ≤ k < α that

∑n

i=1
|ani|k ≤

(∑n

i=1

(
|ani|k

)α/k
)k/α(∑n

i=1
1
)(α−k)/α ≤ Cn. (2.7)

Hence, when 1 < α < 2, we have by EXni = 0, (1.6) of Lemma 1.6, (2.7) (taking k = 1),
Markov’s inequality, and (2.1) that

b−1n max
1≤j≤n

∣
∣
∣
∑j

i=1
aniEX

(n)
i

∣
∣
∣ ≤

∑n

i=1
|ani|P(|Xni| > bn) + b−1n max

1≤j≤n

∣
∣
∣
∑j

i=1
aniEXniI(|Xni| > bn)

∣
∣
∣

≤ C
∑n

i=1
|ani|P(|X| > bn) + b−1n

∑n

i=1
|ani|E|Xni|I(|Xni| > bn)

≤ Cn
E exp

(
h|X|γ)

exp
(
hb

γ
n

) + Cb−1n
∑n

i=1
|ani|E|X|I(|X| > bn)

≤ Cn

nhnγ/α
+ Cb−1n nE|X|I(|X| > bn)

=
Cn

nhnγ/α
+ Cb−1n n

∑∞
k=n

E|X|I(bk < |X| ≤ bk+1)

≤ Cn

nhnγ/α
+ Cb−1n n

∑∞
k=n

bk+1P(|X| > bk)

≤ Cn

nhnγ/α
+ Cb−1n n

∑∞
k=n

bk+1
E exp

(
h|X|γ)

exp
(
hb

γ

k

)

≤ Cn

nhnγ/α
+ Cb−1n n

∑∞
k=n

(k + 1)1/α
(
log(k + 1)

)1/γ
k−hkγ/α

≤ Cn

nhnγ/α
+ Cb−1n

∑∞
k=n

(k + 1)1/α+1
(
log(k + 1)

)1/γ
k−hkγ/α

≤ Cn

nhnγ/α
+ Cn−1/α(logn

)−1/γ −→ 0, as n −→ ∞.

(2.8)

Elementary Jensen’s inequality implies that for any 0 < s < t,

(∑n

i=1
|ani|t

)1/t ≤
(∑n

i=1
|ani|s

)1/s
. (2.9)
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Therefore, when 0 < α ≤ 1, we have by (1.5) of Lemma 1.6, (2.9), Markov’s inequality, and
(2.1) that

b−1n max
1≤j≤n

∣
∣
∣
∑j

i=1
aniEX

(n)
i

∣
∣
∣ ≤

∑n

i=1
|ani|P(|Xni| > bn) + b−1n

∑n

i=1
|ani|E|Xni|I(|Xni| ≤ bn)

≤ C
∑n

i=1
|ani|P(|X| > bn)

+ Cb−1n
∑n

i=1
|ani|(E|X|I(|X| ≤ bn) + bnP(|X| > bn))

≤ Cb−1n nδ/αE|X|I(|X| ≤ bn) + Cnδ/αP(|X| > bn)

≤ Cb−1n nδ/α
∑n

k=2
E|X|I(bk−1 < |X| ≤ bk) +

Cnδ/αE exp
(
h|X|γ)

exp
(
hb

γ
n

)

≤ Cb−1n nδ/α
∑n

k=2
bkP(|X| > bk−1) +

Cnδ/α

nhnγ/α

≤ Cb−1n nδ/α
∑n

k=2
bk

E exp
(
h|X|γ)

exp
(
hb

γ

k−1
) +

Cnδ/α

nhnγ/α

≤ Cb−1n nδ/α
∑n

k=2
k1/α(log k)1/γ(k − 1)−h(k−1)

γ/α

+
Cnδ/α

nhnγ/α

≤ Cn−1/α(logn
)−1/γ

nδ/α +
Cnδ/α

nhnγ/α

= C(logn)−1/γnδ/α−1/α +
Cnδ/α

nhnγ/α
−→ 0, as n −→ ∞.

(2.10)

By (2.8) and (2.10), we can get (2.6) immediately. Hence, for n large enough,

P

(

max
1≤j≤n

∣
∣
∣
∑j

i=1
aniXni

∣
∣
∣ > εbn

)

≤
∑n

i=1
P(|Xni| > bn) + P

(

max
1≤j≤n

∣
∣
∣T

(n)
j

∣
∣
∣ >

ε

2
bn

)

. (2.11)

To prove (2.2), we only need to show that

I
.=
∑∞

n=1
nsα−2∑n

i=1
P(|Xni| > bn) < ∞,

J
.=
∑∞

n=1
nsα−2P

(

max
1≤j≤n

∣
∣
∣T

(n)
j

∣
∣
∣ >

ε

2
bn

)

< ∞.
(2.12)
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By Definition 1.3, Markov’s inequality and (2.1), we can see that

I
.=
∑∞

n=1
nsα−2∑n

i=1
P(|Xni| > bn)

≤ C
∑∞

n=1
nsα−2∑n

i=1
P(|X| > bn)

≤ C
∑∞

n=1
nsα−1E exp

(
h|X|γ)

exp
(
hb

γ
n

)

≤ C
∑∞

n=1

nsα−1

nhnγ/α
< ∞.

(2.13)

For fixed n ≥ 1, it is easily seen that {X(n)
i , 1 ≤ i ≤ n} are still AANA random variables by

Lemma 1.4. For r > 2, it follows from Lemma 1.5, Cr ’s inequality, and Jensen’s inequality that

J
.=
∑∞

n=1
nsα−2P

(

max
1≤j≤n

∣
∣
∣T

(n)
j

∣
∣
∣ >

ε

2
bn

)

≤ C
∑∞

n=2
nsα−2b−rn E

(

max
1≤j≤n

∣
∣
∣T

(n)
j

∣
∣
∣
r
)

≤ C
∑∞

n=2
nsα−2b−rn

[
∑n

i=1
|ani|rE

∣
∣
∣X

(n)
i − EX

(n)
i

∣
∣
∣
r
+
(∑n

i=1
|ani|2E

∣
∣
∣X

(n)
i − EX

(n)
i

∣
∣
∣
2
)r/2

]

≤ C
∑∞

n=2
nsα−2b−rn

∑n

i=1
|ani|rE

∣
∣
∣X

(n)
i

∣
∣
∣
r
+ C

∑∞
n=2

nsα−2b−rn

(∑n

i=1
|ani|2E

∣
∣
∣X

(n)
i

∣
∣
∣
2
)r/2

.= J1 + J2.

(2.14)

Taking r > max{2, α(sα−1)/(1−δ)}, which implies that r > α. It follows from Cr ’s inequality,
(1.5) of Lemma 1.6, (2.9), Markov’s inequality, and (2.1) that

J1
.= C

∑∞
n=2

nsα−2b−rn
∑n

i=1
|ani|rE

∣
∣
∣X

(n)
i

∣
∣
∣
r

≤ C
∑∞

n=2
nsα−2b−rn

∑n

i=1
|ani|r

[
E|Xni|rI(|Xni| ≤ bn) + brnP(|Xni| > bn)

]

≤ C
∑∞

n=2
nsα−2b−rn

∑n

i=1
|ani|r

[
E|X|rI(|X| ≤ bn) + brnP(|X| > bn)

]

≤ C
∑∞

n=2
nsα−2+(rδ/α)b−rn E|X|rI(|X| ≤ bn) + C

∑∞
n=2

nsα−2+(rδ/α)P(|X| > bn)

≤ C
∑∞

n=2
nsα−2+(rδ/α)b−rn

∑n

k=2
E|X|γ I(bk−1 < |X| ≤ bk) + C

∑∞
n=2

nsα−2+rδ/α E exp
(
h|X|γ)

exp
(
hb

γ
n

)

≤ C
∑∞

k=2

∑∞
n=k

nsα−2(rδ/α)n−r/α(logn
)−r/γ

brkP(|X| > bk−1) + C
∑∞

n=2

nsα−2+(rδ/α)

nhnγ/α
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≤ C
∑∞

k=2
brk

E exp
(
h|X|γ)

exp
(
hb

γ

k−1
) + C

∑∞
n=2

nsα−2+(rδ/α)

nhnγ/α

≤ C
∑∞

k=2

kr/α
(
log k

)r/γ

(k − 1)h(k−1)
γ/α

+ C
∑∞

n=2

nsα−2+(rδ/α)

nhnγ/α
< ∞.

(2.15)

By Cr ’s inequality, (1.5) of Lemma 1.6, (2.9), and Jensen’s inequality, we can get that

J2
.= C

∑∞
n=2

nsα−2b−rn

(∑n

i=1
|ani|2E

∣
∣
∣X

(n)
i

∣
∣
∣
2
)r/2

≤ C
∑∞

n=2
nsα−2b−rn

(∑n

i=1
|ani|2

[
E|Xni|2I(|Xni| ≤ bn) + b2nP(|Xni| > bn)

])r/2

≤ C
∑∞

n=2
nsα−2b−rn

[∑n

i=1
|ani|2

[
EX2I(|X| ≤ bn) + b2nP(|X| > bn)

]]r/2

≤ C
∑∞

n=2
nsα−2+(rδ/α)b−rn

[
EX2I(|X| ≤ bn) + b2nP(|X| > bn)

]r/2

≤ C
∑∞

n=2
nsα−2+(rδ/α)b−rn

[
EX2I(|X| ≤ bn)

]r/2
+ C

∑∞
n=2

nsα−2+(rδ/α)[P(|X| > bn)]
r/2

≤ C
∑∞

n=2
nsα−2+(rδ/α)b−rn E|X|rI(|X| ≤ bn) + C

∑∞
n=2

nsα−2+(rδ/α)P(|X| > bn)

< ∞ (
see the proof of (2.15)

)
.

(2.16)

Therefore, the desired result (2.2) follows from (2.13)–(2.16) immediately. This completes the
proof of the theorem.

Similar to the proof of Theorem 2.1, we can get the following result for sequences of
AANA random variables.

Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of AANA random variables which is stochastically
dominated by a random variable X, and let {ani, i ≥ 1, n ≥ 1} be an array of real numbers. Suppose
that the conditions (H1)–(H3) are satisfied (EXni = 0 is replaced by EXn = 0 in H1). Then, for any
ε > 0,

∑∞
n=1

nsα−2P
(

max
1≤j≤n

∣
∣
∣
∑j

i=1
aniXi

∣
∣
∣ > εbn

)

< ∞, (2.17)

where s ≥ 1/α and bn
.= n1/αlog1/γn.

The following result provides the Marcinkiewicz-Zygmund type strong law of large
numbers for weighted sums

∑n
i=1aiXi of AANA sequence of random variables.
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Theorem 2.3. Let {Xn, n ≥ 1} be a sequence of AANA random variables which is stochastically
dominated by a random variable X and {an, n ≥ 1} be a sequence of real numbers. Suppose that the
conditions (H2)–(H4) are satisfied. Then for any ε > 0,

∑∞
n=1

nsα−2P
(

max
1≤j≤n

∣
∣Sj

∣
∣ > εbn

)

< ∞, (2.18)

lim
n→∞

Sn

bn
= 0 a.s., (2.19)

where s ≥ 1/α, bn
.= n1/αlog1/γn and Sn =

∑n
i=1aiXi for n ≥ 1.

Proof. Similar to the proof of Theorem 2.1, we can get (2.18) immediately, which yields that

∑∞
n=1

n−1P
(

max
1≤j≤n

∣
∣Sj

∣
∣ > εbn

)

< ∞. (2.20)

Therefore,

∞ >
∑∞

n=1
n−1P

(

max
1≤j≤n

∣
∣Sj

∣
∣ > εbn

)

=
∑∞

i=0

∑2i+1−1
n=2i

n−1P
(

max
1≤j≤n

∣
∣Sj

∣
∣ > εn1/α(logn

)1/γ
)

≥ 1
2

∑∞
i=1

P

(

max
1≤j≤2i

∣
∣Sj

∣
∣ > ε2(i+1)/α

(
log 2i+1

)1/γ
)

.

(2.21)

By Borel-Cantelli lemma, we obtain that

lim
i→∞

max1≤j≤2i
∣
∣Sj

∣
∣

2(i+1)/α
(
log 2i+1

)1/γ = 0 a.s. (2.22)

For all positive integers n, there exists a positive integer i0 such that 2i0−1 ≤ n < 2i0 . We have
by (2.22) that

|Sn|
bn

≤ max
2i0−1≤n<2i0

|Sn|
bn

≤ 22/αmax1≤j≤2i
∣
∣Sj

∣
∣

2(i0+1)/α
(
log 2i0+1

)1/γ

(
i0 + 1
i0 − 1

)1/γ

−→ 0 a.s., as i0 −→ ∞,

(2.23)

which implies (2.19). This completes the proof of the theorem.

Remark 2.4. In Theorems 2.1–2.3, the condition (H1) or (H4) is needed. Under the weaker
condition ((H5) or (H6)) than ((H1) or (H4)), we can get the following Theorems 2.5–2.7. The
details of their proofs are omitted.
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Theorem 2.5. Let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise AANA random variables which is
stochastically dominated by a random variable X, and let {ani : i ≥ 1, n ≥ 1} be an array of real
numbers. Suppose that the conditions (H2), (H3), and (H5) are satisfied. Then, for any ε > 0,

∑∞
n=1

n−1P
(

max
1≤j≤n

∣
∣
∣
∑j

i=1
aniXni

∣
∣
∣ > εbn

)

< ∞, (2.24)

where bn
.= n1/αlog1/γn.

Theorem 2.6. Let {Xn, n ≥ 1} be a sequence of AANA random variables which is stochastically
dominated by a random variable X, and let {ani, i ≥ 1, n ≥ 1} be an array of real numbers. Suppose
that the conditions (H2), (H3) and (H5) are satisfied (EXni = 0 is replaced by EXn = 0 in (H5)). Then,
for any ε > 0,

∑∞
n=1

n−1P
(

max
1≤j≤n

∣
∣
∣
∑j

i=1
aniXi

∣
∣
∣ > εbn

)

< ∞, (2.25)

where bn
.= n1/αlog1/γn.

Theorem 2.7. Let {Xn, n ≥ 1} be a sequence of AANA random variables which is stochastically
dominated by a random variable X, and let {an, n ≥ 1} be a sequence of real numbers. Suppose that
the conditions (H2), (H3), and (H6) are satisfied. Then, for any ε > 0,

∑∞
n=1

n−1P
(

max
1≤j≤n

∣
∣Sj

∣
∣ > εbn

)

< ∞,

lim
n→∞

Sn

bn
= 0 a.s.,

(2.26)

where bn
.= n1/αlog1/γn and Sn =

∑n
i=1aiXi for n ≥ 1.
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