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We apply an analytical method called the Optimal Parametric Iteration Method (OPIM) to
multispecies Lotka-Volterra equations. By using initial values, accurate explicit analytic solutions
have been derived. The method does not depend upon small parameters and provides us with a
convenient way to optimally control the convergence of the approximate solutions. An excellent
agreement has been demonstrated between the obtained solutions and the numerical ones. This
new approach, which can be easily applied to other strongly nonlinear problems, is very effective
and yields very accurate results.

1. Introduction

A substantial amount of research work has been invested in the study of nonlinear systems
of differential equations. Systems of nonlinear differential equations arise in many scientific
models such as biological systems and are used in various fields as engineering, chemistry,
and ecology. In 1925, Lotka [1] developed the motion of an evolutionary system based on two
fundamental changes, those involving matter between components of a system and those
involving exchanges of energy [2]. Unlike being grounded in chemistry, Lotka believed that
these ideas could be applied to any biological system. In 1926, Volterra [3] developed thewell-
known mathematical models of multispecies interaction. These models, the predator, prey
and competition models are known today as Lotka-Volterra models. The environment of the
species can be influenced by the effect of food availability, weather conditions, temperature,
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mating habits, contact with predators, and other resource or physical environmental
quantities. Lotka-Volterra equations describe variations of population densities of few species
that compete for the same resources. However, the ecological system is often affected by
environmental changes and other human activities. In many practical situations, it is often
the case that one of the species maybe suffers a significant loss or increase in density for
some reason at some transitory time slots. These models, for instance, they can describe
the competing fish species which are exploited by human activities, can also describe the
dynamics of normal and tumour cells in a changing environment under the effects of the
chemotherapy. These models are also applicable in case we are interested in the existence
and stability of tumor-free solution and how treatment affects the interaction of tumour
and normal cells. Although simplistic, these few models are still used as the foundation
for mathematical models in biology [4]. These models can also describe the time history
of a biological system and are used in various fields as engineering, chemistry, biology,
or mathematics [5]. In fact the Lotka-Volterra model is one of the most popular ones to
demonstrate a simple nonlinear control system. The accurate solutions of the Lotka-Volterra
equations may become a difficult task either if the equations are stiff or when the number of
species is large.

Nonlinear analytical techniques for solving nonlinear problems have been dominated
by the perturbation methods, which have found wide applications in engineering [6].
But perturbation methods have their limitations: perturbation techniques are based on the
existence of a small parameter. A majority of nonlinear problems have no small parameters
at all. So, it is necessary to develop a kind of new nonlinear analytical methods which does
not require small parameters at all.

There exist same alternative methods, such as the variational iteration method [7],
the Adomian decomposition method [8], a modified Lindstedt-Poincare method [9], the
homotopy analysis method [10], the homotopy perturbation method [11], and the optimal
homotopy asymptotic method [12].

In recent years, a growing interest towards the application of iterative techniques in
nonlinear problems has appeared in science and engineering. In 1987 Mickens [13] proposed
an iterative scheme for nonlinear problems. In 2002 Lim and Wu [14], in 2006 Hu [15],
and in 2008 Chen and Liu [16] proposed modified iteration procedures. Also He [17]
proposed some iterative and asymptotic methods for nonlinear problems and later, Marinca
and Herişanu [18] proposed in 2006 a new iteration method by combining Mickens’ and
He’s iteration methods. Ramos [19] investigated other iterative techniques for nonlinear
differential equations. These methods are valid not only for a small parameter, but also
for very large parameters and have been used to solve nonlinear both conservative and
nonconservative oscillators.

In this paper we propose a new approach to find analytic approximate solution of
multispecies Lotka-Volterra models using a new iterative procedure, namely, the Optimal
Parametric Iteration Method (OPIM). The efficiency of the proposed procedure is proved
since an accurate solution is explicitly analytically achieved in an iterative manner after
only one iteration. This new approach involves the presence of a finite number of initially
unknown parameters, which are optimally determined, providing a rigorous way to control
the convergence of the solutions [20]. Different methodologies have been applied to study
Lotka-Volterra models [21–25]. Using this new approach, the obtained approximate solutions
rapidly converge to the exact solution. Some alternative ways for mathematical biology
problems are presented in [26–28].
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2. Formulation and Solution Approach

In order to introduce the OPIM framework for the most general form of systems of nonlinear
ODEs, we consider the following system:

ẋ1 = f1(x1, x2, x3, . . . , xs)

ẋ2 = f2(x1, x2, x3, . . . , xs)
...

ẋs = fs(x1, x2, x3, . . . , xs)

x1(0) = a1, x2(0) = a2, . . . , xs(0) = as,

(2.1)

where dot denotes derivative with respect to time t, fi, (i = 1, 2, . . . , s) are nonlinear functions.
In the frame of OPIM we define the following iteration formulas:

ẋ1,n+1 = f1(x1,n, x2,n, . . . , xs,n) +m1(t, Ci)f1,x1(x1,n, x2,n, xs,n) + n1(t, Ci)f1,x2(x1,n, x2,n, . . . , xs,n)

+ · · · + p1(t, Ci)f1,xs(x1,n, x2,n, . . . , xs,n)

ẋ2,n+1 = f2(x1,n, x2,n, . . . , xs,n) +m2
(
t, Cj

)
f2,x1(x1,n, x2,n, xs,n) + n2

(
t, Cj

)
f2,x2(x1,n, x2,n, . . . , xs,n)

+ · · · + p2
(
t, Cj

)
f2,xs(x1,n, x2,n, . . . , xs,n)

...

ẋs,n+1 = fs(x1,n, x2,n, . . . , xs,n) +ms(t, Ck)fs,x1(x1,n, x2,n, xs,n) + ns(t, Ci)fs,x2(x1,n, x2,n, . . . , xs,n)

+ · · · + ps(t, Ck)fs,xs(x1,n, x2,n, . . . , xs,n),
(2.2)

where f1,xi = ∂f1/∂xi, n = 0, 1, 2 . . . and Ci, Cj · · ·Ck are unknown constants at this moment.
A special case of this general system is the Lotka-Volterra model with three species,

which is described by the following system of nonlinear differential equation [29, 30]:

ẋ = x
(
1 − x − αy − βz

)
,

ẏ = y
(
1 − βx − y − αz

)
,

ż = z
(
1 − αx − βy − z

)
,

(2.3)

where α and β are known parameters not necessary small. Initial conditions are

x(0) = a, y(0) = b, z(0) = c. (2.4)

In this special case, it is clear that s = 3 and

x1 = x, x2 = y, x3 = z, x4 = x5 = · · · = 0

f1 = x
(
1 − x − αy − βz

)
, f2 = y

(
1 − βx − y − αz

)
,

f3 = z
(
1 − αx − βy − z

)
, f4 = f5 = · · · = 0.

(2.5)
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With the notations (2.5), the iteration formulas (2.2) can be written in the form

ẋn+1 = f
(
xn, yn, zn

)
+m1(t, Ci)fx

(
xn, yn, zn

)
+n1(t, Ci)fy

(
xn, yn, zn

)
+p1(t, Ci)fz

(
xn, yn, zn

)

ẏn+1 = g
(
xn, yn, zn

)
+m2

(
t, Cj

)
gx

(
xn, yn, zn

)
+n2

(
t, Cj

)
gy

(
xn, yn, zn

)
+p2

(
t, Cj

)
gz
(
xn, yn, zn

)

żn+1 = h
(
xn, yn, zn

)
+m3(t, Ck)hx

(
xn, yn, zn

)
+n3(t, Ck)hy

(
xn, yn, zn

)
+p3(t, Ck)hz

(
xn, yn, zn

)
,

(2.6)

where

f
(
x, y, z

)
= x

(
1 − x − αy − βz

)
,

g
(
x, y, z

)
= y

(
1 − βx − y − αz

)
,

h
(
x, y, z

)
= z

(
1 − αx − βy − z

)
,

(2.7)

and fx = ∂f/∂x, n = 0, 1, 2 . . ., and Ci, Cj , Ck, i, j, k = 1, 2, . . . are unknown constants at this
moment. There are many possibilities to choose the auxiliary functionsme(t, Ci), ne(t, Cj) and
pe(t, Ck), e = 1, 2, 3. Basically, the shape of me, ne, and pe must follow the terms appearing in
(2.6). Therefore, we try to choose the auxiliary functions so that in (2.6) the productsmeFx are
of the same shape with the function Fx, where F ∈ {f, g, h}. The constants Ci, Cj , Ck which
appear in the auxiliary functions me, ne, and pe can be optimally determined via various
methods, for example, putting the conditions that the residual functionals J1, J2, and J3 given,
respectively, by

J1 =
∫b

a

[
ẋ − f(x, y, z)

]2
dt,

J2 =
∫b

a

[
ẏ − g

(
x, y, z

)]2
dt,

J3 =
∫b

a

[
ż − h

(
x, y, z

)]2
dt

(2.8)

be minimum, that is:

∂Ji
∂Cj

= 0, i = 1, 2, 3, j = 1, 2, . . . , s (2.9)

taking into account also the initial conditions. Other methods suitable to determine the
constants Cj are the Galerkin method, the collocation method, and so on.

On the other hand, the initial approximations x0, y0, and z0 and also the auxiliary
functions me, ne, and pe are not unique.

In short, the basic idea of the proposed procedure (OPIM) are the construction a
new iteration scheme (2.6), the involvement of the auxiliary functions, and the convergence-
control constantsC1, C2, . . .which lead to an excellent agreement of the approximate solutions
with the exact ones.
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3. Results and Discussions

In this section we present an example to show the efficiency of the method described in the
previous section for solving (2.3).

Taking into account the initial conditions, we choose the initial approximations as
functions of the form

x0 = ae−t, y0 = be−t, z0 = ce−t. (3.1)

For n = 0 into (2.6) we can construct the following iteration formulas:

ẋ1 = x0 − x2
0 − αx0y0 − βx0z0 +m1(t, Ci)

[
1 − (

2x0 + αy0 + βz0
)]

+ n1(t, Ci)(−αx0)

+ p1(t, Ci)
(−βx0

)
,

ẏ1 = y0 − βx0y0 − y2
0 − αy0z0 +m2

(
t, Cj

)(−βy0
)
+ n2

(
t, Cj

)[
1 − (

βx0 + 2y0 + αz0
)]

+ p2(t, Ci)
(−αy0

)
,

ż1 = z0 − αx0z0 − βy0z0 − z20 +m3(t, Ck)(−αz0) + n3(t, Ck)
(−βz0

)
+ p3(t, Ck)

× [
1 − (

αx0 + βy0 + 2z0
)]
.

(3.2)

For the auxiliary functions mi, ni, pi, i = 1, 2, 3 we choose the expressions

m1(t, Ci) = (C1t + C2)e−t, n1(t, Ci) = C3t + C4, p1(t, Ci) = (C5t + C6)e−t

m2
(
t, Cj

)
= (C7t + C8), n2

(
t, Cj

)
= (C9t + C10)e−t, p2

(
t, Cj

)
= (C11t + C12)e−2t

m3(t, Ck) = (C13t + C14)e−t, n3(t, Ck) = (C15t + C16)e−2t, p3(t, Ck) = (C17t + C18)e−t.
(3.3)

Alternatively, we can consider either other expressions for the initial approximations
and the auxiliary function, follows as:

x0 = ae−2t, y0 = b, z0 = ce−t,

m1
(
t, C′

i

)
= C′

1e
−2t, n1

(
t, C′

i

)
=
(
C′

2t + C′
3
)
e−t, p1

(
t, C′

i

)
=
(
C′

4t + C5
)
e−2t

m2

(
t, C′

j

)
=
(
C′

6t + C′
7
)
e−t, n2

(
t, C′

j

)
= C′

8e
−2t, p2

(
t, C′

j

)
=
(
C′

9t + C′
10

)
e−t

m3
(
t, C′

k

)
= C′

11e
−t, n3

(
t, C′

k

)
= C′

12t + C′
13, p3

(
t, C′

k

)
=
(
C′

14t + C′
15

)
e−2t,

(3.4)

and so on.
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Now, substituting (3.1) and (3.3) into (3.2), we obtain the equations in ẋ1, ẏ1, and ż1,
respectively,

ẋ1 = (−αaC3t + a − αaC4)e−t +
[(
C1 − βaC5

)
t + C2 − βaC6 −

(
a2 + αab + βac

)]
e−2t

− (
2a + αb + βc

)
(C1t + C2)e−3t

ẏ1 =
[(
C9t − βbC7

)
t + b − βbC8 + C10

]
e−t

−
[(
βa + 2b + αc

)
C9t + βab + b2 + αbc +

(
βa + 2b + αc

)
C10

]
e−2t − (αbC11t + αbC12)e−3t

ż1 = (C17t + C18 + c)e−t

−
{[(

αa + βc + 2c
)
C17 + αcC13

]
t + αac + βbc + c2 + αcC14 +

(
αa + βc + 2c

)
C18

}
e−2t

− (
βcC14t + βcC16

)
e−3t.

(3.5)

The solutions of (3.5)with the initial conditions

x1(0) = a, y1(0) = b, z1(0) = c (3.6)

can be written in the form

x1(t) = a + αaC3te
−t + (a − αaC3 − αaC4)

(
1 − e−t

) − 1
2
(
C1 − βaC5

)
te−2t

+
1
4

[
C1 − βaC5 + 2

(
C2 − βaC6

) − 2
(
a2 + αab + βac

)](
1 − e−2t

)
+
1
3
(
2a + αb + βc

)

× C1te
−3t − 1

9
(
2a + αb + βc

)
(C1 + 3C2)

(
1 − e−3t

)

y1(t) = b +
(
b − βbC8 + C10

)(
1 − e−t

)
+
(
βbC7 − C9

)
te−t

− 1
4

[(
βa + 2b + αc

)
C9 + 2

(
βab + b2 + αbc

)
+ 2

(
βa + 2b + αc

)
C10

](
1 − e−2t

)

+
1
2
(
βa + 2b + αc

)
C9te

−2t − 1
9
αb(C11 + 3C12)

(
1 − e−3t

)
+
1
3
αbC11te

−3t

z1(t) = c + (C17 + C18 + c)
(
1 − e−t

) − C17te
−t

− 1
4

[
2
(
αac + βbc + c2

)
+ 2αcC14 + 2

(
αa + βc + 2c

)
C18 + αcC1 +

(
αa + βc + 2c

)
C17

]

×
(
1 − e−2t

)
+
1
2
[
αcC13 +

(
αa + βc + 2c

)
C17

]
te−2t +

1
3
βcC15te

−3t − 1
4
βc(C15 + 3C16)

×
(
1 − e−3t

)
.

(3.7)

By substituting (3.7) into (2.3) it results in the residuals:

R1(t, Ci) = ẋ1 − x1
(
1 − x1 − αy1 − βz1

)
,

R2(t, Ci) = ẏ1 − y1
(
1 − βx1 − y1 − αz1

)
,

R3(t, Ci) = ż1 − z1
(
1 − αx1 − βy1 − z1

)
.

(3.8)
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Making collocation in the arbitrary points ti, i = 1, 2, . . . , 6

R1(t1, Ci) = R1(t2, Ci) = · · · = R1(t6, Ci) = 0

R2(t1, Ci) = R2(t2, Ci) = · · · = R2(t6, Ci) = 0

R3(t1, Ci) = R3(t2, Ci) = · · · = R3(t6, Ci) = 0,

(3.9)

we obtain the optimal values of the constants C1, C2, . . . , C18 and therefore the solution (3.7)
in the first approximation is well determined.

In the case when a = 0.2, b = 0.3, c = 0.5, α = 0.1, β = 0.1, t1 = 0.3, t2 = 0.7, t3 = 1, t4 = 2,
t5 = 3, t6 = 5, from (3.9)we obtain

C1 = 1.669841466, C2 = −0.452081708, C3 = 0.899181851, C4 = 2.361528973,

C5 = −1.940901217, C6 = 0.582517076, C7 = 1033.008542, C8 = −540.7564632,
C9 = 30.90993616, C10 = −14.59841284, C11 = 29.8078082, C12 = 94.01456893,

C14 = 53.21346396, C15 = −22.21139178, C16 = −35.8538265, C17 = −0.345181562,
C18 = 0.993490199.

(3.10)

By substituting (3.10) into (3.7) we obtain after only one iteration, the following
expression for the first-order approximate solution of Lotka-Volterra equations in three
species (2.3):

x1(t) = 0.8281811 − (0.452081708t + 1.669841466)e−t + (2.361528973t − 0.899181851)e−2t

+ (0.582517076t + 1.940902217)e−3t,
(3.11)

y1(t) = 0.83333001 + (0.08032009t − 1.924281055)e−t

+ (1.715501457t + 0.342446025)e−2t + (0.298078082t + 1.04850505)e−3t,
(3.12)

z1(t) = 0.836102311 + (0.345181562t − 1.148308637)e−t + (0.001606241t + 1.532769033)e−2t

− (0.370189863t + 0.720960396)e−3t.
(3.13)

It is easy to verify the accuracy of the obtained solution if we graphically compare the
analytical solution with the numerical one. Figures 1, 2, and 3 show the comparison between
the present solutions and the numerical integration results obtained by a fourth-order Runge-
Kutta method.

It can be seen from Figures 1–3 that the solution obtained by OPIM is in very good
agreement with numerical integration results.

4. Conclusions

In this work the Optimal Parametric Iteration Method (OPIM) is employed to propose new
analytic solutions for some nonlinear differential equations. The validity of the method is
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Figure 1: Comparison between the approximate solution (3.11) and numerical results obtained for (2.3) in
case a = 0.2, b = 0.3, c = 0.5, α = 0.1, β = 0.1: — numerical solution; - - - approximate solution.
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Figure 2: Comparison between the approximate solution (3.12) and numerical results obtained for (2.3) in
case a = 0.2, b = 0.3, c = 0.5, α = 0.1, β = 0.1: — numerical solution; - - - approximate solution.
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Figure 3: Comparison between the approximate solution (3.13) and numerical results obtained for (2.3) in
case a = 0.2, b = 0.3, c = 0.5, α = 0.1, β = 0.1: — numerical solution; - - - approximate solution.
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illustrated on the Lotka-Volterra model with three species. Our procedure is independent
of the presence of small parameters. Our construction of iterations is different from other
known iteration techniques. In short, the basic new ideas of our method are related to the
construction of a new iteration scheme which involves some auxiliary functions me, ne, and
pe, e = 1, 2, 3 whose parameters C1, C2, . . . (viz. the convergence-control constants) lead to
an excellent agreement of the approximate solutions with the exact ones. Our procedure is
very effective, explicit, and accurate for nonlinear approximations, rapidly converging to
the exact solution after only one iteration. This procedure provides a simple but rigorous
way to control and adjust the convergence of the solutions by optimally determining the
parametersC1, C2, . . .. Our method gives analytic solutions valid globally in time unlike other
known methods, for instance. Adomian decomposition method, which unfortunately does
not guarantee analytic solutions valid globally in time as proved by Rèpaci [31].
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[31] A. Rèpaci, “Nonlinear dynamical systems: on the accuracy of Adomian’s decomposition method,”
Applied Mathematics Letters, vol. 3, no. 4, pp. 35–39, 1990.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


