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We study the stability and feedback stabilization of the uninfected steady state of a human
immunodeficiency virus (HIV) infection model. The model is a 6-dimensional nonlinear ODEs
that describes the interaction of the HIV with two classes of target cells, CD4+ T cells and
macrophages, and takes into account the Cytotoxic T Lymphocytes (CTLs) immune response.
Lyapunov function is constructed to establish the global asymptotic stability of the uninfected
steady state of the model. In a control system framework, the HIV infection model incorporating
the effect of Highly Active AntiRetroviral Therapy (HAART) is considered as a nonlinear control
system with drug dose as control input. We developed treatment schedules for HIV-infected
patients by using Model Predictive Control (MPC-)based method. The MPC is constructed on the
basis of an approximate discrete-timemodel of the HIV infection model. TheMPC is applied to the
stabilization of the uninfected steady state of the HIV infection model. Besides model inaccuracies
that HIV infection model suffers from, some disturbances/uncertainties from different sources
may arise in the modelling. In this work the disturbances are modelled in the HIV infection model
as additive bounded disturbances. The robustness of the MPC against small model uncertainties
or disturbances is also shown.

1. Introduction

In the last decade many mathematical models have been proposed to describe the immuno-
logical response to infection with the human immunodeficiency virus (HIV). HIV is respon-
sible of acquired immunodeficiency syndrome (AIDS). Some of these models mainly rep-
resent the interaction of the HIV with the CD4+ T cells, others take into account the Cytotoxic
T Lymphocytes (CTLs) immune response [1]. A tremendous effort has been made in
studying the basic properties of these models such as positive invariance properties, bound-
edness of the model solutions, and stability analysis of the steady states (see e.g., [2–14]).
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Studying such properties is important for understanding the associated characteristics
of the HIV dynamics. The treatment of HIV-infected patients is of major importance in
today’s social medicine. Currently, the most important categories of anti-HIV drugs are
reverse transcriptase inhibitors (RTIs) drugs and protease inhibitors (PIs) drugs. Reverse
transcriptase inhibitors prevent the HIV from infecting cells by blocking the integration of
the HIV viral code into the host cell genome. Protease inhibitors prevent already infected
host cells from producing infectious virus particles. Recently, Highly Active AntiRetroviral
Therapies (HAARTs) which consist of one or more RTI and a PI can suppress viral load
below detectable levels and consequently prolong time to the onset of AIDS. Perleson et al.,
observed that after the rapid first phase of decay during the initial 1-2 weeks of antiretroviral
treatment, plasma virus levels declined at a considerably slower rate [15]. This second phase
of viral decay was attributed to the turnover of a longer-lived virus reservoir of infected
cells. These cells are called macrophages and considered as the second-target cell for the
HIV. Therefore, the HIV infection model with two classes of target cells is more accurate
than the model with one class of target cells (see [8, 16]). Some HIV infection models
exist to describe the interaction process of the HIV not only with the CD4+ T cells but also
with the macrophages which are the crucial immune responses and play important roles in
phagocytosis (see e.g., [8, 16–19]). The basic properties of the two target cells models are
recently studied in [3, 20–22]. In [23, 24] we have studied a class of virus infection models
assuming that the virus attacksmultiple classes of target cells. However, in [3, 20–24], the CTL
immune response is neglected. The role of CTL cells is to attack the infected cells. The first
purpose of the present paper is to study the basic properties of an HIV infection model which
describes the interaction of the HIV with two target cells, CD4+ T cells and macrophages
and takes into consideration the CTL immune response. The global stability of the uninfected
steady state of the model is established using a Lyapunov approach.

Optimal treatment scheduling of HIV infection using a control theoretic approach is
the subject of substantial research activity. In [17, 18, 25–28], an open-loop optimal controller
is designed via Pontryagin’s Maximum Principle. A major drawback of such controller is its
lack of robustness against disturbances or model uncertainties. In fact, the interaction of HIV
with immune system is not very clear and complicated which leads to model inaccuracies
and parameter uncertainties. Moreover, some disturbances may arise from immune system
fluctuation or immune system reactions due to coinfections. Therefore, the design of optimal
treatment schedules based on an open-loop optimal controller may lead to undesired results.
To overcome this drawback, a feedback controller which has inherent robustness property
against disturbances has to be designed. Recently, model predictive control (MPC) method
is developed for determining optimal treatment schedules for HIV patients ([20, 29–33]).
The MPC method obtains the feedback control by solving a finite horizon optimal control
problem at each time instant using the current state of the system as the initial state for the
optimization and applying “the first part” of the optimal control. The study of stability and
robustness properties of MPC schemes has been the subject of intensive research in recent
years (see e.g., [34, 35]). In [20, 30, 31, 33], the HIV infection model is discretized and the
MPC is constructed on the basis of an approximate discrete-time model. Sufficient conditions
are established which guarantee that the MPC designed via approximate discrete-time model
stabilizes the original continuous-time model. In [29, 32], the effect of the discretization of
the differential equations on the stability analysis was not considered. The importance of
approximate discrete-time design is supported by a series of counter examples (see e.g.,
[36]), which show that the controller that stabilizes the approximate discrete-time model,
may fail to stabilize the original continuous-time system. In [29–33], the MPC is applied to
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the one target cell (i.e., CD4+ T cell) model. The HIV infection model with two target cells is
considered in [20], but the CTL immune response is neglected.

The second purpose of the present paper is to develop treatment schedules for HIV-
infected patients by using MPC. The construction of MPC is based on the approximate
discrete-time model of the model. The HIV infection model with additive disturbances is
also considered, and the inherent robustness properties of the MPC are established.

The layout of the paper is as follows: in Section 2, we introduce the HIV infection
model and study its basic properties. In Section 3, the HIV infection model with additive
disturbance is outlined. In Section 4 we outline the MPC design for nonlinear control systems
and summarize the main results obtained in [36, 37]. Application of MPC to the HIV infection
model is given in Section 5. Section 6 presents the simulation results. The last section is the
conclusion.

2. HIV Infection Model

We will study the mathematical model of HIV infection which describes the interaction
of HIV with two cocirculation populations of target cells, potentially representing CD4+ T
cells and macrophages and takes into consideration the CTL immune response. The model
is a modification of the HIV infection model presented in [3, 8, 16, 20], which include an
additional state variable for the CTL cells:

ẋ = λ1 − d1x − β1e−ψ1m1xv, (2.1)

ẋ1 = β1e
−ψ1m1xv − ax1 − px1z, (2.2)

ẏ = λ2 − d2y − e−ψ1m1β2yv, (2.3)

ẏ1 = e−ψ1m1β2yv − ay1 − py1z, (2.4)

v̇ = e−ψ2m2k
(
x1 + y1

) − rv, (2.5)

ż = c
(
x1 + y1

)
z − bz. (2.6)

Here x(t), x1(t), y(t), y1(t), v(t), and z(t) represent the concentrations of uninfected
CD4+ T cells, infected CD4+ T cells, uninfected macrophages, infected macrophages, free
virus particles, and CTL cells, respectively, at time t. The populations of the uninfected CD4+

T cells and macrophages are described by (2.1) and (2.3), respectively, where λ1 and λ2
represent, respectively, the rates of which new CD4+ T cell and macrophages are generated
from sources within the body, d1, d2 are the death rate constants, and β1, β2 are the infection
rate constants. Equations (2.2) and (2.4) describe the population dynamics of the infected
CD4+ T cells and macrophages and show that they die with rate constant a and killed at rate
px1z and py1z. The virus particles are produced by the infected CD4+ T cells and infected
macrophages with rate constant k and are cleared from plasma with rate constant r. The CTL
cells are produced at a rate c(x1 + y1)z and are decayed at a rate bz. The effect of the RTI
and PI drugs is represented by the chemotherapy functions e−ψ1m1(t) and e−ψ2m2(t), where the
parameters ψ1 and ψ2 are the efficiencies of RTI and PI drugs, respectively. The variablesm1(t)
and m2(t) are the doses from drugs administrated to RTI and PI, respectively (see [38]). All
the parameters of the model are supposed to be positive.
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We introduce control functions as ui(t) = ψimi(t), i = 1, 2. Then system (2.1)–(2.6)
can be considered as a nonlinear control system with (x, x1, y, y1, v, z)

′ as the state vector
and (u1, u2)

′ is the control input vector. We are now ready to present a study on the basic
mathematical properties of the model.

2.1. Positive Invariance

Nowwe show that model (2.1)–(2.6) is biologically acceptable in the sense that no population
goes negative:

ẋ
∣
∣(x=0) = λ1 ≥ 0,

ẋ1
∣
∣(x1=0) = β1e

−u1xv ≥ 0, (x, v ≥ 0),

ẏ
∣∣(y=0) = λ2 ≥ 0,

ẏ1
∣∣(y1=0) = β2e

−u1yv ≥ 0,
(
y, v

) ≥ 0,

v̇
∣∣(v=0) = ke−u2

(
x1 + y1

) ≥ 0,
(
x1, y1 ≥ 0

)
,

ż
∣∣(z=0) = 0.

(2.7)

This means that the nonnegative orthant R
6
+ is positively invariant, namely, if a

trajectory starts in the nonnegative orthant, it remains there. The boundedness of the
solutions of model (2.1)–(2.6) will be given in the following proposition.

Proposition 2.1. There exist positive numbers L1, L2, and L3 such that the compact set,

Γ1 =
{(
x, x1, y, y1, v, z

) ∈ R
6
+ : 0 ≤ x, x1, y, y1 ≤ L1, 0 ≤ z ≤ L2, 0 ≤ v ≤ L3

}
, (2.8)

is positively invariant.

Proof. Let X = x + x1 + y + y1 + (p/c)z, then

Ẋ ≤ λ1 + λ2 − σX, (2.9)

where σ = min{d1, d2, a, b}. Hence 0 ≤ X(t) ≤ (λ1 + λ2)/σ for all t ≥ 0 if X(0) ≤ (λ1 + λ2)/σ.
It follows that 0 ≤ x(t), x1(t), y(t), y1(t) ≤ L1, 0 ≤ z(t) ≤ L2 for all t ≥ 0 if x(0) + x1(0) + y(0) +
y1(0) + (p/c)z(0) ≤ L1, where L1 = (λ1 + λ2)/σ, L2 = cL1/p. On the other hand,

v̇(t) ≤ ke−u2L1 − rv ≤ kL1 − rv, (2.10)

then 0 ≤ v(t) ≤ L3, for all t ≥ 0 if v(0) ≤ L3, where L3 = kL1/r.
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2.2. Steady States

We will compute the steady states of system (2.1)–(2.6) under constant controllers, that is,
for uj(t) = uj , j = 1, 2, t ≥ 0. It will be explained in the following that the behavior of model
(2.1)–(2.6) crucially depends on the basic reproduction number given by

R0(u1, u2) =
e−(u1+u2)k

(
β1x0 + β2y0

)

ar
, (2.11)

where x0 = λ1/d1, y0 = λ2/d2. We note that R0 can be written as R0 = R1 + R2, where

R1(u1, u2) =
e−(u1+u2)kβ1λ1

ard1
, R2(u1, u2) =

e−(u1+u2)kβ2λ2
ard2

(2.12)

are the basic reproduction numbers of each CD4+ T and macrophages dynamics separately.
The immune strength of CD4+ T andmacrophages are given, respectively, by I1 = cλ1/ab and
I2 = cλ2/ab (see [12]).

Lemma 2.2. (i) If R0 ≤ 1, then model (2.1)–(2.6) has only one steady state E0.
(ii) If R0 > 1 and (I1R1/I1 + R1) + (I2R2/I2 + R2) < 1, then there exist two steady states E0

and E1.
(iii) If R0 > 1 and (I1R1/I1 + R1) + (I2R2/I2 + R2) > 1, then there exist three steady states

E0, E1, and E2.

Proof. The proof can follow the same lines as that of Proposition 2 in [3] and Theorem 2.2 in
[39].

In the present paper, we are interested in studying the stability of the uninfected steady
state of the HIV infection model.

2.3. Global Stability of E0

In this section, we prove the global stability of the uninfected steady state by using a
Lyapunov approach.

Theorem 2.3. If R0 ≤ 1, then E0 is globally asymptotically stable.

Proof. By the method of [3, 5], we consider a Lyapunov function:

W
(
x, x1, y, y1, v, z

)
= x0

[
x

x0
− ln

(
x

x0

)
− 1

]
+ y0

[
y

y0
− ln

(
y

y0

)
− 1

]
+ x1 + y1 +

aeu2

k
v +

p

c
z.

(2.13)
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We note thatW is defined, continuous, and positive definite for all (x, x1, y, y1, v, z) >
0. Also, the global minimumW = 0 occurs at the uninfected steady state E0. Further, function
W along the trajectories of (2.1)–(2.6) satisfies

dW

dt
=
(
1 − x0

x

)(
λ1 − d1x − β1e−u1xv

)
+
(
1 − y0

y

)(
λ2 − d2y − β2e−u1yv

)

+ β1e−u1xv − ax1 − px1z + β2e−u1yv − ay1 − py1z

+
aeu2

k

(
ke−u2

(
x1 + y1

) − rv
)
+
p

c

(
c
(
x1 + y1

)
z − bz)

= λ1
[
2 − x

x0
− x0
x

]
+ λ2

[
2 − y

y0
− y0
y

]
+
areu2

k
[R0 − 1]v − pλ1

aI1
z.

(2.14)

Since I1 > 0, then the last term of (2.14) is negative. Also, since the arithmetical mean
is greater than or equal to the geometrical mean, then the first two terms of (2.14) are less
than or equal to zero. Therefore, if R0 ≤ 1 then dW/dt ≤ 0 for all x, y, v, z > 0. The maximal
compact invariant set in {(x, x1, y, y1, v, z) ∈ Γ1 : dW/dt = 0} is the singleton {E0} when
R0 ≤ 1. The global stability of E0 follows from LaSalle’s Invariance Principle.

Corollary 2.4. System (2.1)–(2.6) is globally asymptotically controllable to E0 with piecewise
constant controllers.

Proof. Let u1(t) = u1 and u2(t) = u2 with u1 + u2 > uc, where

uc = max
{
0, ln

(
kβ1x0 + kβ2y0

ar

)}
, (2.15)

then R0(u1, u2) < 1, therefore the corresponding trajectory will tend to E0 as t → ∞.

Remark 2.5. We observe that, if R0 < 1, then it is sure that R1 < 1 and R2 < 1. But if one
considers the three-dimensional model (2.1)-(2.2), and (2.5) and designs a controller such
that R1 < 1, then the whole system may be unstable around E0, because R0 > 1. This shows
the importance of considering the effect of the macrophages in the HIV dynamics.

We note that the HIV infection model suffers from model inaccuracies or disturbances
that may arise from different sources such as, modeling errors, immune system fluctuation,
immune effect of a coinfection, measurement noise, and estimation errors. Therefore, in the
next section we will consider the presence of the disturbances in the HIV infection model.
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3. HIV Infection Model with Additive Disturbances

The model inaccuracies or disturbances can be modeled in the HIV infection model as
additive disturbances (see [20]). Therefore, model (2.1)–(2.6) can be written as:

ẋ = λ1 − d1x − β1e−u1xv +w1, (3.1)

ẋ1 = β1e−u1xv − ax1 − px1z +w2, (3.2)

ẏ = λ2 − d2y − β2e−u1yv +w3, (3.3)

ẏ1 = β2e−u1yv − ay1 − py1z +w4, (3.4)

v̇ = ke−u2
(
x1 + y1

) − rv +w5, (3.5)

ż = c
(
x1 + y1

)
z − bz +w6. (3.6)

In (3.1)–(3.6), wi(t) describe model uncertainties/disturbances which are assumed to
satisfy the following bound:

‖wi(t)‖ ≤ εi, εi ≥ 0, i = 1, . . . , 6. (3.7)

It is important to show that in the presence of the disturbances, the nonnegative
orthant R

6
+ is positively invariant and the solutions of model (3.1)–(3.6) are bounded.

3.1. Positive Invariance

For the model (3.1)–(3.6), the following conditions guarantee that the nonnegative orthant
R

6
+ is positively invariant (see [20]):

ẋ
∣∣(x=0) = λ1 +w1 ≥ 0, if w1 ≥ −λ1,

ẋ1
∣∣(x1=0) = β1e

−u1xv +w2 ≥ 0, ifw2 ≥ −β1e−u1xv,
ẏ
∣∣(y=0) = λ2 +w3 ≥ 0, if w3 ≥ −λ2,

ẏ1
∣∣(y1=0) = β2e

−u1yv +w4 ≥ 0, if w4 ≥ −β2e−u1yv,

v̇
∣∣(v=0) = ke−u2

(
x1 + y1

)
+w5 ≥ 0, if w5 ≥ −ke−u2(x1 + y1

)
,

ż
∣∣(z=0) = w6, if w6 ≥ 0.

(3.8)

We note that the conditions in (3.8) give a lower bound of the disturbances only at the
the boundary of R

6
+.

Proposition 3.1. Suppose that the disturbances satisfy the bound (3.7) then there exist positive
numbersM1,M2, andM3 such that the compact set,

Γ2 =
{(
x, x1, y, y1, v, z

) ∈ R
6
+ : 0 ≤ x, x1, y, y1 ≤M1, 0 ≤ z ≤M2, 0 ≤ v ≤M3

}
, (3.9)

is positively invariant.
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Proof. The proof can follow the same as Proposition 2.1. It can be easily to show that M1 =
(λ1 + λ2 + ε)/σ,M2 = cM1/p,M3 = (kM1 + ε5)/r where ε = (ε1 + ε2 + ε3 + ε4 + (p/c)ε6).

4. MPC for Nonlinear Systems

In this section, we outline the MPC design for nonlinear systems and give a review on the
results obtained in [36, 37]. We have shown in the preceding sections that the HIV system
states for the nominal model (2.1)–(2.6) and disturbed model (3.1)–(3.6) can be taken from
compact sets. Moreover, since the drug dosage of HAART can not arbitrarily increased, thus
the controller can also be taken from a compact set.

The sets of real and natural numbers (including zero) are denoted, respectively, by R

and N. The notation R+ denote the set of real numbers in the interval [0,∞). A continuous
function σ : R+ → R+ is of class-K if σ(0) = 0, σ(s) > 0 for all s > 0 and it is strictly
increasing. It is of class-K∞ if it is of class-K and σ(s) → ∞ when s → ∞. A continuous
function β : R+ × R+ → R+ is of class-KL if β(s, τ) is of class-K in s for every τ ≥ 0, it is
strictly decreasing in τ for every s > 0 and β(s, τ) → 0 when τ → ∞. The Euclidean norm of
a vector x is denoted as ‖x‖. Given ρ > 0 we define Bρ to be a ball of radius ρ centered at the
origin. We introduce the following notation Yρ = Y ∩ Bρ for any set Y.

Consider a continuous-time nonlinear control system given by

ẋ(t) = f(x(t), u(t)), x(0) = x0, (4.1)

where x(t) ∈ R
n, u(t) ∈ U ⊂ R

m are the state and control input, respectively, f : R
n×U → R

n

is continuous and Lipschitz continuous with respect to x in any compact set and f(0, 0) = 0,
andU is compact and 0 ∈ U.

The control is taken to be a piecewise constant function

u(t) = u(iT) =: ui, for t ∈ [iT, (i + 1)T), i ∈ N, (4.2)

where T > 0 is the control sampling period which is fixed.
We will assume that there is a compact set X ⊂ R

n containing the origin that is
positively invariant with respect to system (4.1) for any piecewise constant controller u ∈ U.
Let t �→ φE(t;x, u) denote the solution of (4.1) with given u, and x = x(0). The exact discrete-
time model which describes the behavior of the system at the sampling instants iT , i ∈ N is
given by

xEi+1 = F
E
T

(
xEi , ui

)
, xE0 = x0, (4.3)

where FET (x, u) := φE(T ;x, u). We note that, since f is typically nonlinear, FET in (4.3) is
not known in most cases, therefore the controller design can be carried out by means of an
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approximate discrete-time model

xAi+1 = F
A
T,h

(
xAi , ui

)
, xA0 = x0, (4.4)

where h is a modelling parameter, which is typically the step size of the underlying numerical
method. The applied numerical scheme approximation has to ensure the closeness of the
exact models in the following sense. LetX be a compact set such that X ⊃ X.

Assumption A1. There exists an h∗ > 0 such that

(i) FAT,h(0, 0) = 0, FAT,h is continuous in both variables uniformly in h ∈ (0, h∗], and
Lipschitz continuous w.r.t x in any compact set, uniformly in small h,

(ii) there exists a γ ∈ K such that

∥∥∥FET (x, u) − FAT,h(x, u)
∥∥∥ ≤ Tγ(h), (4.5)

for all x ∈ X, all u ∈ U, and h ∈ (0, h∗].
We note that, under the conditions on the function f , then Assumption A1 can be

proven for many one-step numerical methods.

The problem is to define a state-feedback controller:

vh : X −→ U (4.6)

using the approximate discrete-time model (4.4), to practically stabilize the exact discrete-
time system (4.3).

Since we want to find a state-feedback controller, it seems to be reasonable to
investigate when it does exist. The next assumption formulates, roughly speaking, a
necessary condition for the existence of a stabilizing feedback.

Assumption A2. There exists an h∗ > 0 such that the exact discrete-time model (4.3)
is practically asymptotically controllable from X to the origin with piecewise constant
controllers for all h ∈ (0, h∗] (see e.g., [36, 40] for the definition).

For the solutions of (4.3) and (4.4) with u = {u0, u1, . . .}, and x0 we will use the
notations φEi (x0,u) and φ

A
i (x0,u), respectively.

LetN ∈ N be given and let (4.4) be subject to the cost function

JT,h(N,x,u) =
N−1∑

i=0

Tlh
(
xAi , ui

)
+ g

(
xAN

)
, (4.7)

where u = {u0, u1, . . . , uN−1}, xAi = φAi (x,u), i = 0, 1, . . . ,N, lh and g are given functions,
satisfying the following assumptions.

To ensure the existence and the stabilizing property of the proposed controller, the
following assumptions are needed.
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Assumption A3. Let X1 = X + B1,

(i) g : X1 → R is continuous, positive definite radially unbounded, and Lipschitz
continuous in any compact set,

(ii) lh(x, u) is continuous with respect to x and u, uniformly in small h, and
Lipschitz continuous in any compact set,

(iii) there exist an h∗ > 0 and two class-K∞ functions ϕ1 and ϕ2 such that the
inequality,

ϕ1(‖x‖) ≤ lh(x, u) ≤ ϕ2(‖x‖) + ϕ2(‖u‖), (4.8)

holds for all x ∈ X1, u ∈ U and h ∈ (0, h∗].

The terminal cost function g and/or a terminal constraint set given explicitly or
implicitly play a crucial role in establishing the desired stabilizing property. We will assume
that g has to be a local control Lyapunov function.

Assumption A4. There exist h∗ > 0 and η > 0 such that for all x ∈ Gη = {x : g(x) ≤ η} there
exists a κ(x) ∈ U such that inequality

g
(
FAT,h(x, κ(x))

)
− g(x) ≤ −Tlh(x, κ(x)) (4.9)

holds true for all h ∈ (0, h∗].

Consider the optimization problem:

PAT,h(N,x) : min{JT,δ(N,x,u) : ui ∈ U}. (4.10)

If this optimization problem has a solution denoted by u∗(x) = {u∗0(x), u∗1(x), . . . , u∗N−1(x)},
then the first element of u∗ is applied at the state x, that is,

vh(x) = u∗0(x). (4.11)

The value function for the optimal control problem is

VN(x) = JT,h(N,x,u∗(x)). (4.12)

Let h∗0 denote the minimum of the values h∗ generated by Assumptions A1-A4.

Theorem 4.1 (see [36]). If Assumptions A1–A4 hold true, then

(i) there exist an h∗1 with 0 < h∗1 ≤ h∗0, and a constant VA
max independent of N, such that

VN(x) ≤ VA
max for all x ∈ X, h ∈ (0, h∗1] andN ∈ N,
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(ii) there exist constantsN∗, LV , and δV and functions σ1, σ2 ∈ K∞ such that for all x ∈ X,
N > N∗, h ∈ (0, h∗1] and i = 1, 2, . . .,

σ1(‖x‖) ≤ VN(x) ≤ σ2(‖x‖),

VN
(
FAT,h(x,vh(x))

)
− VN(x) ≤ −Tϕ1(‖x‖).

(4.13)

Moreover, for all x, y ∈ X1 with ‖x − y‖ ≤ δV
∣
∣VN(x) − VN

(
y
)∣∣ ≤ LV

∥
∥x − y∥∥ (4.14)

for all h ∈ (0, h∗1].

Clearly X ⊂ {x : VN(x) ≤ VA
max}.

Theorem 4.1 shows that undersuitable conditions; the state feedback MPC renders the
origin to be asymptotically stable for the approximate discrete-time model. These conditions
concern directly with the data of the problem and the design parameters (the horizon length
N, the stage cost lδ, the terminal cost g, and the terminal constraint set Gη) of the method but
not the results of the design procedure.

Theorem 4.2 (see [36]). Suppose that Assumptions A1–A4 are valid and N is chosen such that
N ≥N∗, then, there exists β ∈ KL, and for any δ > 0 there exists an h∗ > 0 such that for any x0 ∈ X
and h ∈ (0, h∗] the trajectory of the exact discrete-time system with the MPC, vh

xEi+1 = F
E
T

(
xEi ,vh

(
xEi

))
, xE0 = x0, (4.15)

satisfies

∥∥∥xEi
∥∥∥ ≤ β(‖x0‖, iT) + δ, for all i ≥ 0. (4.16)

Theorem 4.2 lays the foundation for the design of a state feedback MPC via an
approximate discrete-time model to achieve practical stability of the exact discrete-time
model. Achieving practical stability of the exact model requires that the approximation error
can be made sufficiently small. By application of some of one-step numerical approximation
formula with possibly variable step size (e.g., a Runge-Kutta formula), the approximation
error can be made sufficiently small.

4.1. Robustness Properties of the MPC

In this section we show the inherent robustness properties of the MPC against to bounded
disturbances. We consider the continuous-time model (4.1)with additive disturbances

ż(t) = f(z(t), u(t)) +w(t), z(0) = x0, (4.17)
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where z(t) ∈ X and w(t) ∈ W are the state and disturbance, respectively, W is compact,
0 ∈ W . We assume that there exists μ > 0 such thatW ⊂ βμ. For a given w : R+ → R we use
the following notation wT [i] := {w(t), t ∈ [iT, (i + 1)T), i ∈N}. Let us define

Wμ =
{
w ∈ L∞

[0,∞) : w(t) ∈W, a.e. t ∈ [0,∞)with ‖w‖∞ ≤ μ
}
,

Wμ =
{
wT [i], w ∈Wμ, i = 0, 1, 2, . . .

}
.

(4.18)

The exact discrete-time model for model (4.17) can be given as:

zEi+1 = FE
T

(
zEi , ui,wT [i]

)
, zE0 = x0. (4.19)

In this paper, the MPC is constructed on the basis of the approximate discrete-time
model (4.4) for the nominal model (4.1). The MPC algorithm consists of performing the
following steps at certain instants ti = iT :

(1) measure the current state of the system zEi ;

(2) compute the open-loop optimal control u∗ to the problem PA
T,h

(N,zEi );

(3) the control vh(zEi ) := u∗0 is applied to the system in the interval [iT, (i + 1)T) (the
remaining {u∗1, . . . , u∗N−1} is discarded);

(4) the procedure is repeated from (1) for the next sampling instants ti+1 = (i + 1)T .

Theorem 4.3 (see [37]). Suppose that A1–A4 are valid and N is chosen such as N ≥ N∗. Then
there exist β ∈ KL, θ ∈ K∞, μ∗ > 0 and for any δ > 0 there exists an h∗ > 0 such that for any
x0 ∈ X and h ∈ (0, h∗], the trajectory of the exact discrete-time model with the MPC, vh

zEi+1 = FE
T

(
zEi ,vh

(
zEi

)
, wT [i]

)
, zE0 = x0, (4.20)

and wT [i] ∈Wμ∗satisfies

∥∥∥zEi
∥∥∥ ≤ β(‖x0‖, iT) + θ

(
μ∗) + δ, for all i ≥ 0. (4.21)

Theorems 4.3 show that under suitable conditions the state feedback MPC practically
stabilizes the exact discrete-time model for sufficiently small integration parameter and
disturbances. When the full state of the system is not available for feedback, an observer
can be designed for estimating the unknown states. In [41], it is shown that under a set of
conditions the output feedback MPC practically stabilize the exact discrete-time model of the
plant for sufficiently small approximation and estimation errors.

5. MPC for the HIV Infection Model

In this section we apply the MPC method proposed in Section 4 to the nominal model (2.1)–
(2.6) as well as the disturbed model (3.1)–(3.6). We will show that, with a suitable choice
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of N and functions g and lh, the assumptions of Section 4 can be satisfied. We introduce
new variables by the definition ξ1 = x − x0, ξ2 = x1, ξ3 = y − y0, ξ4 = y1, ξ5 = v, ξ6 = z.
Let ξ = (ξ1, ξ2, .., ξ6)

′, then in these new variables the model (3.1)–(3.6) takes the form of (4.17)
with

f(ξ, u) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ1 − d1(ξ1 + x0) − β1e−u1(ξ1 + x0)ξ5
β1e

−u1(ξ1 + x0)ξ5 − aξ2 − pξ2ξ6
λ2 − d2

(
ξ3 + y0

) − β2e−u1
(
ξ3 + y0

)
ξ5

β2e
−u1(ξ3 + y0

)
ξ5 − aξ4 − pξ4ξ6

ke−u2(ξ2 + ξ4) − rξ5
c(ξ2 + ξ4)ξ6 − bξ6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.1)

and w = (w1, w2, . . . , w6)
′. The disturbance vector w is assumed to be bounded in a compact

set containing the origin. Let the compact setX be defined as

X =
{
ξ ∈ R

6 : −x0 ≤ ξ1≤M1 − x0,−y0≤ξ3 ≤M1 − y0, 0≤ξ2, ξ4 ≤M1, 0≤ξ5≤M3, 0 ≤ ξ6 ≤M2

}
,

(5.2)

whereM1,M2, andM3 are as in Proposition 3.1. For the nominal model, the compact set X
is defined as X by replacingMi with Li, i = 1, 2, 3 where Li are given in Proposition 2.1.

To verify Assumptions A3 and A4, we linearized the nominal system (5.1) (i.e.,wi = 0)
around the origin in case of constant controllers, that is, u1(t) = u1 > uc1, u2(t) = u2 > u

c
2 with

uc1 + uc2 = uc, where uc is given in Proposition 3.1. Let AC be the coefficient matrix of the
linearized system. Then the discrete-time model for the linearized system is given by:

ξi+1 = eACTξi, i ≥ 0. (5.3)

Let the sampling period be chosen to be T = 1 and, u1 = u2 = 2. The running cost and
the terminal cost can be chosen as:

lh(ξ, u) = α1ξ
′Qξ + α2

(
u1 − uc1

)2 + α3
(
u2 − uc2

)2
,

g(ξ) = ξ′Pξ,
(5.4)

where αi are positive weighting constants, P is a positive definite diagonal matrix, and Q is
a positive definite symmetric matrix satisfying the Lyapunov equation for the discrete-time
system (5.3):

Q = −(A′
TPAT − P

)
, AT = eACT . (5.5)

From (5.4), Assumption A3 is satisfied. Assumption A2 follows from Corollary 2.4
and Assumption A1 holds also true if we choose a suitable numerical integration scheme
(e.g., the Runge-Kutta formula). To verify Assumption A4, the weights αi and the matrix P
have been chosen through a series of numerical experiments as α1 = 0.1, α2 = 0.05, α3 = 0.01,
and P = diag(0.1, 1, 0.5, 1, 0.1, 1). It has been verified numerically by solving a constrained
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Table 1: The values of the parameters in the HIV infection model.

Parameters λ1 d1 β1 λ2 d2 β2 a k r c p b

Values 0.3 0.1 0.1 0.02 0.1 0.01 0.5 1.0 0.1 0.01 0.03 0.02
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Figure 1: The evolution of uninfected CD4+ T cells.

minimization problem with several starting points that Assumption A4 is satisfied over the
whole set X. Thus all assumptions of the proposed method can be satisfied with suitable
choice of the parameters of the MPC method.

6. Numerical Results

We perform simulation studies using the parameter values which are listed in Table 1.
All computations are carried out by MATLAB, in particular, the optimal control

sequence is computed by the fmincon code of the Optimization Toolbox. To reduce the
computational complexity we chose horizon length N to be N = 8. Simulations for the
continuous-time system are carried out using ode45 program in MATLAB.

In Figures 1, 2, 3, 4, 5, and 6, we show the evolution of the HIV infection model
variables for two cases.

Untreated Case

In this case no treatment is used (i.e., u1 = u2 = 0). We can see that, for the parameters given in
Table 1, R0(0, 0) = 6.04 > 1, and (I1R1/(I1 +R1)) + (I2R2/(I2 +R2)) = 0.299 < 1. Therefore E0 is
unstable, E1 exists and stable, while E2 does not exist. To show the simulation results for this
case, we assume that the infection occurs with a certain amount of virus particles v = 0.001
and CTL cells z = 0.03. Thus the initial conditions for the untreated case are x(0) = x0,
y(0) = y0, x1(0) = y1(0) = 0, v(0) = 0.001, and z(0) = 0.03. From Figures 1, 2, 3, 4, 5, and 6, it
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Figure 2: The evolution of infected CD4+ T cells.

0 100 200 300 400 500 600
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

U
ni

nf
ec

te
d

 m
ac

ro
ph

ag
es

 c
el

ls

Time

 Case (I)
 Case (II)
 Case (III)

u1 = u2 = 0

Figure 3: The evolution of uninfected macrophages.

can be seen that the concentrations of uninfected CD4+ T cells, macrophages, and CTL cells
are decaying, while the concentrations of infected CD4+ T cells, infected macrophages, and
free viruses are increasing. Also we note that the trajectory tends to the stable infected steady
state E1 = (0.488, 0.5026, 0.1319, 0.0136, 5.1626, 0).
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Treated Case

In this case, the treatment is designed via MPC strategy for the nominal and disturbed HIV
infectionmodels. In this case, we assume that the treatment is initiatedwith 50 time units after
the onset of infection. Thus the initial conditions for the MPC are given by x(0) = 0.4845,
x1(0) = 0.5024, y(0) = 0.132, y1(0) = 0.0137, v(0) = 5.1874, and z(0) = 0.0139. The
disturbances are simulated by wi(t) ∈ [ηi, εi],

wi(t) = wi

(
j
)
= ηi +

(
εi − ηi

)
r
(
j
)
, t ∈ [

jT,
(
j + 1

)
T
)
, i = 1, . . . , 6, j = 0, 1, . . . , (6.1)

where the parameters r(j)’s are uniformly distributed random numbers on [0, 1] and ηi = −εi
when the system states lie in the interior of the positive orthant R

6
+. At the boundary of R

6
+,

the lower bound ηi has to be chosen as the following:

η1 = max{−λ1,−ε1},
η2 = max

{−β1e−u1(ξ1 + x0)ξ5,−ε2
}
,

η3 = max{−λ2,−ε3},
η4 = max

{−β2e−u1
(
ξ3 + y0

)
ξ5,−ε4

}
,

η5 = max
{−ke−u2(ξ2 + ξ4),−ε5

}
,

η6 = 0,

(6.2)

to guarantee that the positive orthant R
6
+ is positively invariant.

Figures 1, 2, 3, 4, 5, and 6 show also the application of the MPC to the HIV infection
models in following cases.

Case (I): nominal HIV infection model that is, wi(t) = 0.
Case (II): disturbed HIV infection model with ε1 = 0.03, ε2 = 0.005, ε3 = 0.0001, ε4 =

0.0005, ε5 = 0.04, ε6 = 0.0001.
Case (III): disturbed HIV infection model with ε1 = 0.1, ε2 = 0.01, ε3 = 0.005, ε4 = 0.001,

ε5 = 0.08, ε6 = 0.0002.
Figures 1 and 3 show that when the MPC is applied, the number of uninfected CD4+ T

cells is increasing as well as the macrophages. This means that the HAART helps the immune
system to recover with some fluctuations due to the presence of disturbances. From Figures
2 and 4 we can see that the number of infected CD4+ T cells and infected macrophages is
decaying during the treatment. Figure 5 shows that after initiation of HAART the viral load
drops quickly and it can be kept under a suitable level, with a small controller, corresponding
to rather mild dosage of HAART. Figure 6 shows that the CTL cells are decaying for untreated
as well as treated cases but with a faster rate than untreated case. The model predictive
controller as a function of the time for cases (I) and (II) is shown in Figure 7. It is observed
that the treatment is initiated with a stronger dosage of HAART and sequentially decreasing
over time. Thus we can say that when theMPC strategy is applied in the presence of bounded
disturbances the trajectory of the system tends to a ball around the uninfected steady state E0

and remains there (i.e., practical stability). We observe that, for the disturbance-free Case (I),
the size of the ball is very small due to small numerical errors. For cases (II) and (III), the size
of the ball becomes larger and larger by increasing the bounds of the disturbances.
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Figure 4: The evolution of infected macrophages.
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Figure 5: The evolution of free viruses.

7. Conclusion

The basic properties of the 6-dimensional model that describes the interaction of the HIV
with two target cells, CD4+ T cells, and macrophages and takes into account the Cytotoxic
T Lymphocytes (CTL) immune response were studied. The HIV infection model was
incorporated to allow some additive disturbances. The HIV infection model incorporates
the effect of HAART is considered as a nonlinear control system, where the control input is
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Figure 6: The evolution of CTL cells.
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Figure 7: MPC for cases (I) and (II).

defined to be dependent on the drug dose and drug efficiency. The proposed MPC method is
applied for determining HAART schedules and stabilizing the HIV infection system around
the uninfected steady state. The inherent robustness properties of the MPC were established.
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