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To quantitatively study the effect of delay on selection dynamics in long-term sphere culture of cancer stem cells (CSCs), a selection
dynamic model with time delay is proposed.Theoretical results show that the ubiquitous time delay in cell proliferationmay be one
of the important factors to induce fluctuation, and numerical simulations indicate that the proposed selection dynamical model
with time delay can provide a better fitting effect for the experiment of a long-term sphere culture of CSCs. Thus, it is valuable to
consider the delay effect in the future study on the dynamics of nongenetic heterogeneity of clonal cell populations.

1. Introduction

In the past years research on cancer stem cells (CSCs) has
become a focus of cancer research, because CSCs have self-
renewing and multidirectional differentiation capability and
may result in tumors [1–6]. Recently, cell state dynamics due
to non-genetic heterogeneity of clonal cell populations also
has received more and more attention [7–10].

In order to expand CSCs, sphere culture is performed by
experimental cell biologists [11, 12]. However, whether long-
term sphere culture can maintain a high ratio of CSCs is
unclear. For this question, it is interesting that [13, 14] obtain
a similar quantitative result through different mathematical
model; that is, the ratio of CSCs will towards an apparent
equilibrium state in a long-term sphere culture. Concretely,
[13] proposed a kinetic model using ordinary differential
equations that considered the symmetric and asymmetric
division of CSCs, as well as the proliferation and transforma-
tion of differentiated cancer cells (DCCs). And [14] puts for-
ward a Markov model in which cells transition stochastically
between states.However, the time delay due to thematuration
of individual cells has been ignored in [13, 14].

In the present paper, based on the kinetic model in [13],
we further explore the effect of time delay on selection
dynamics in long-term sphere culture. The results show that
the ubiquitous time delay in cell proliferation may be one of
the important factors to induce fluctuation, and the proposed
selection dynamical model with time delay can provide a
better fitting effect for the experiment of a long-term sphere
culture of CSCs in [13]. The organization of the paper is as
follows. In Section 2, we formulate the selection dynamical
model with time delay in long-term sphere culture of CSCs.
Section 3 first gives the analytic analysis on our proposed
model and then presents numerical simulations to compare
the effect of time delay. Finally, some predictive conclusions
with biological implications are given in Section 4.

2. Model Description

Let 𝑥(𝑡) and 𝑦(𝑡) denote the population sizes of CSCs and
DCCs at time 𝑡 in long-term sphere culture, respectively.
Our previous work [13] proposed the followingmathematical
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model to describe the interactive growth of the CSCs and
DCCs in a long-term sphere culture:
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Here the constants 𝑏
𝑥
, 𝑏
𝑦
are called the net birth rate or intrin-

sic growth rate of population𝑥, 𝑦, respectively.𝛽
𝑥
denotes the

conversion rate from CSCs to DCCs in the process of CSCs
proliferation, and 𝛽

𝑦
denotes the conversion rate from DCCs

to CSCs in the process of DCCs proliferation.
Note that time delay may play an important role in many

biological models. As shown in [15], the maturation of indi-
vidual cells may need a period of time 𝜏; that is, the number
of these cells at time 𝑡 may depend on the population at a
previous time 𝑡 − 𝜏. Under the assumption of equal discrete
retarded cell proliferation, model (1) can be modified to
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Here 𝜏 is the time delay due to maturation time.
For (2), inspired by [16], we give the following average

fitness of the population:
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𝑥
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𝑦
𝑦 (𝑡 − 𝜏) . (3)

Thus, the selection dynamics in long-term sphere culture of
CSCs can be written as
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For (4), let𝑁(𝑡) = 𝑥(𝑡) + 𝑦(𝑡). We have

d𝑁(𝑡)
d𝑡
= (1 − 𝑁 (𝑡 − 𝜏)) 𝜙. (5)

Therefore,𝑁(𝑡) → 1 as 𝑡 → ∞; that is, the total population
size remains constant. Hence 𝑥(𝑡) and 𝑦(𝑡) in (4) can be
understood as the frequency of CSCs andDCCs, respectively.
Furthermore, since 𝑦(𝑡) can be replaced by 1 − 𝑥(𝑡), system
(4) describes only a single differential equation; that is,
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with time delay in long-term sphere culture of CSCs.

3. Results

3.1. Dynamic Analysis. The objective of this subsection is to
analyze the dynamical behavior of (6). In order to explore the
effect of the delay, we split this into two cases.

3.1.1. Case of 𝜏 = 0. In this case, we focus on the dynamic
analysis if the delay is nonexistent; that is, 𝜏 = 0 in (6). We
start by studying the existence of nonnegative equilibria in
the interval [0, 1]. Let 𝑓(𝑥) = 𝑎
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Hence there are two different real roots for 𝑓(𝑥) = 0 if 𝑎
3
̸= 0.

Furthermore, since
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we know that there is a unique positive equilibrium 𝑥∗ ∈
(0, 1) for (6) if 𝑎

3
̸= 0 (see Figures 1(a) and 1(b)). When 𝑎

3
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(see Figure 1(c)), it is clear that there is only one positive
equilibrium
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The combination of the above results and the phase
diagram (see Figure 1(d)) of system (6) yields the following
result.

Proposition 1. For system (6), when 𝜏 = 0, a unique positive
equilibrium 𝑥∗ ∈ (0, 1) always exists, and it is globally asym-
ptotically stable.

3.1.2. Case of 𝜏 > 0. In this case, we focus on the dynamic
analysis if the delay is existent; that is, 𝜏 > 0 in (6). Clearly, the
unique positive equilibrium 𝑥∗ ∈ (0, 1) still remains for (6) in
spite of the delay. To study the stability of the equilibrium 𝑥∗,
we first translate 𝑥∗ to the origin. Let

𝑥 = 𝑥 − 𝑥
∗

. (10)

Then (6) becomes, after replacing 𝑥 by 𝑥 again,
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The variational system of (11) at the origin is given by
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The characteristic equation of linear system (12) is given by
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Figure 1: Illustrations of function image of 𝑓(𝑥) = 0 under different cases ((a), (b), and (c)), and the phase diagram (d) of system (6). Here
(a) 𝑎
3
> 0, (b) 𝑎

3
< 0, and (c) 𝑎

3
= 0.

By setting 𝛼 = 0 in (14), we have

cos𝛽𝜏 = 0,

sin𝛽𝜏 = −
𝛽

𝑎
2
+ 2𝑎
3
𝑥
∗
.

(15)

Solving the first algebraic equation in (15), we have
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Therefore, similar to [17], according to the results in [18,
19] or [15, Theorem 2.2], we can obtain the following results
on (6).

Proposition 2. Suppose 𝜏 > 0. Then system (6) has a Hopf
bifurcation at
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Furthermore, according to the results in [15, 20, 21], we
have the following.

Proposition 3. Suppose 𝜏 > 0 in (6). Then the unique positive
equilibrium 𝑥∗ ∈ (0, 1) is stable if 0 < 𝜏 < 𝜏

0
and unstable if

𝜏 > 𝜏
0
.

3.2. Numerical Simulations. For model (1), we designed a
long-term sphere culture of humanbreast cancerMCF-7 stem
cells [13]. Based on the experimental data, using an adap-
tive Metropolis-Hastings (M-H) algorithm to carry out an
extensive Markov-chain Monte-Carlo (MCMC) simulation,
we obtained the estimated parameter values as follows:

𝑏
𝑥
= 2.7506 × 10

−1

, 𝑏
𝑦
= 3.2635 × 10

−1

,

𝛽
𝑥
= 1.4407 × 10

−2

, 𝛽
𝑦
= 2.3288 × 10

−3

.

(22)

When retarded cell proliferation was considered, based
on the induced selection dynamic model (6) and the experi-
mental data in [13], using extensiveMCMC simulation again,
we can obtain the estimated delay 𝜏 = 5.1401 (Figure 2).

Using the estimated values, we can plot the best-fit
solution by fitting model (1) and (6) to the experimental data,
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Figure 2:MCMCanalysis of parameter 𝜏 based on (6), (22), and the experimental data in [13]. (a) is the random series, and (b) is its histogram.
The algorithm ran for 104 iterations with a burn-in of 3000 iterations. The initial conditions were 𝜏 = 0.9.
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Figure 3: Simulations of the dynamical behaviors of the frequency
of CSCs. Experimental data are represented by open circles.The blue
dashed line denotes the best fit of model (1), and the red solid line
denotes the best fit of model (6).

respectively, (Figure 3). From Figure 3, we find that there is
a better simulation effect in model (6) than that in model
(1). In fact, the sum of squares of the deviations (SSD) in
(1) is SSD

(1)
= 7.2943, whereas SSD

(6)
= 4.6387 × 10

−2

in (6). Note that SSD
(6)

is far less than SSD
(1)
. These results

quantitatively confirmed that the induced selection dynamic
model (6) with time delay can provide a better fitting effect in
long-term sphere culture of CSCs.

4. Conclusions

In order to demonstrate the interesting facts about the struc-
tural heterogeneity of cancer (the stable ratio between CSCs
and DCCs), many studies have been reported because it is
helpful for the cancer community to elucidate the controversy
about the CSC hypothesis and the clone evolution theory
of cancer [10, 13, 14] and references cited therein. In the
present paper, a selection dynamic model with time delay is

proposed, and its dynamical behavior is studied. Based on
the theoretical analysis and numerical simulations, we can
conclude the following predictive conclusions.

(i) The maturation of individual cells may produce a
significant effect on the dynamic behavior of the selection
dynamics. When the delay is nonexistent, the frequency of
CSCs will tend to a stable size because the unique positive
equilibrium is globally asymptotically stable (Proposition 1).
Conversely, if the delay is existent, the unique positive
equilibrium may not always maintain its stability and a Hopf
bifurcation may be induced (Propositions 2 and 3); that is, an
oscillated phenomenonmay be induced by the maturation of
individual cells.

(ii) Since the induced selection dynamic model (6) with
time delay can provide a better fitting effect in long-term
sphere culture of CSCs (Figure 3), it is reasonable to consider
the delay effect in the future study on the dynamics of non-
genetic heterogeneity of clonal cell populations.

Since mathematical models can be at best approximate
the behavior of real biological process, the results presented
heremay extend those studies on the structural heterogeneity
of cancer. Note that distributed delay may be more tractable
and realistic than discrete delay in the applications of biology.
Hence it is a worthwhile study in future work to better
understand these topics based on the idea of [15].
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