
Discrete Dynamics in Nature and Society, Vol. 4, pp. 187--200

Reprints available directly from the publisher
Photocopying permitted by license only

2000 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science

Publishers imprint.
Printed in Malaysia.

Quasi-Discrete Dynamics of a Neural Net:
The Lighthouse Model

HERMANN HAKEN

Institute for Theoretical Physics 1, Center of Synergetics, Pfaffenwaldring 57/4, D-70550 Stuttgart, Germany

(Received 30 March 1999)

This paper studies the features of a net of pulse-coupled model neurons, taking into account
the dynamics of dendrites and axons. The axonal pulses are modelled by &functions. In the
case of small damping of dendritic currents, the model can be treated exactly and explicitly.
Because of the &functions, the phase-equations can be converted into algebraic equations at
discrete times. We first exemplify our procedure by two neurons, and then present the results
for N neurons. We admit a general dependence of input and coupling strengths on the
neuronal indices. In detail, the results are

(1) exact solution of the phase-locked state;
(2) stability of phase-locked state with respect to perturbations, such as phase jumps and

random fluctuations, the correlation functions of the phases are calculated;
(3) phase shifts due to spontaneous opening of vesicles or due to failure of opening;
(4) effect of different sensory inputs on axonal pulse frequencies of coupled neurons.
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1 THE MODEL

In my paper I describe a model that I recently
developed [1]. It adopts a middle position between
two well-known extreme models. The one widely-
known model is that of McCulloch and Pitts [2]
which assumes that the neurons have only two
states, one resting state and one firing state. The
firing state is reached when the sum of the inputs
from other neurons exceeds a certain level. The
other case is represented by modelling neurons by
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means of the Hodgkin-Huxley model. This model,
originally devised to understand the properties of
axonal pulses, has been applied to the generation of
pulse trains by neurons [3]. Further related models
are based on the concept of integrate and fire neu-

rons [4,5]. While these models deal with phase
couplings via pulses, another phase coupling is
achieved by the Kuramoto-type [6,7]. For recent
work cf. Tass and Haken [8,9].
We first consider the generation of dendritic

currents by means ofaxonal pulses via the synapses.



188 H. HAKEN

We formulate the corresponding equation for the
dendritic current f as follows:

(t) aP(t r) "7b(t) + F(t), (1)

where P is the axonal pulse, r a time delay. is a
decay constant and Fw is a fluctuating force. As is
known from statistical physics, whenever there
occurs damping, fluctuating forces are present. As
usual we shall assume that the fluctuating forces
are &correlated in time. As is known, vesicles that
release neurotransmitters and thus eventually give
rise to the dendritic current can spontaneously
open. This will be the main reason for the fluctu-
ating force F. But also other noise sources may be
considered here. When a pulse comes in, the open-
ing of a vesicle occurs with only some probability.
Thus we have to admit that in a more appropriate
description a is a randomly fluctuating quantity.
While Fw in (1) represents additive noise, a repre-
sents multiplicative noise. In order to describe the
pulses properly, we introduce a phase angle 05 and
connect P with q5 through a functionf

P(0 (2)

We require the following properties off:
(a) f(0) =0, (3)

(b) f(q5 + 50) f(@, periodic, (4)

(c) sharply peaked. (5)
Finally we have to establish a relationship be-

tween the phase angle q5 of the pulse P produced by
the neuron under consideration and the dendritic
currents. To this end, we write

(t) S(X) + F4(t), (6)

where the function S(X) has the following proper-
ties: S is equal to zero for X smaller than a threshold
(3, then it increases in a quasi-linear fashion until it
saturates. Denoting the dendritic currents of other
neurons by bm, we write S in the form

S(X)-- S(Cmm(t-7-’)q-Pext(/- 7-n) ).
(7)

Here, r’ and r" are delay times. Pext is an external
signal that is transferred to the neuron under consi-
deration from sensory neurons. A simple explicit
representation of (7) obeying the properties just
required for S is given by

ZCmff)m([-- T’)-qt-pext(/- T ’t) ( for S > 0,

otherwise.

The interpretation of Eq. (6) is based on the func-
tioning ofa lighthouse, in which a light beam rotates.
The rotation speed q depends on S according to (6).
The fluctuating forces F+ lead to a shift of the phase
at random instances. The relationships (1), (2) and
(7) can be easily generalized to the equations of a
whole network. The index m or k refers to the loca-
tion and to the property "excitatory" or "inhibi-
tory". The generalizations are straightforward and
read

bm(t) Z am,P,(t- r)- ’bm(t) + Fw,m(t),
k

(9)

P(t) f(dp(t)), (10)

(t) s ( (t

+ PextS(t- + (11)

TWO NEURONS: BASIC EQUATIONS
FOR THE IMPACT OF
PERTURBATIONS

We first make the conditions (3)-(5) of Section
more explicit by using the representation

(12)
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whereby jointly with f(0) 0 (cf. (3))

0-2rcn-& 0<5<2rc, 0(t,)-0. (13)

We choose the function g such that

"+g(5(O(t) ) dt for

(14)

and

0 for tO (tn, tn+). (15)

An explicit form of g reads

g-(t), (16)

because

A f(2) dt + C1 (t) dr, (22)

where 1 (0) Pext, (0) (. Using (21), we rear-
range this equation:

A f(2) dt + 7(Pext,1 )dt

+ Pext,, (t) . (23)

For what follows we put the last three terms on the
r.h.s, of (23)

Ct + B (t). (24)

(O(t) On) dt / 5(0 On)dO,
a t,-e JO,,-

(17)

where O. + 5 05(tn + e).
We start from (9)-(11) and assume that the sys-

tem operates in the linear regime of S (cf. (8)). In
this section we neglect delays, i.e. we put r r’ 0.
By differentiating (11) with respect to time, we may
eliminate ,l from (9) and (11), thus obtaining

1 -1 Af (02) + C,, (18)

We proceed with (20) in complete analogy. We now
evaluate

f(O) dt (5(0 On)dt

(25)

and obtain

(26)

where

for neuron l, where

C1 ")/(Pext,1 I) -4-/ext,1. (19)

Similarly, we obtain for neuron 2"

2 -I-")@2 Af(O1)-I- C2, (20)

where

C2 /(Pext,2 () q-/}ext,2. (21)

We integrate (18) and (19) over time and observe
in (9)-(11) the initial conditions 0(0)- 0, @(0)- 0

H(cr)-0 forcr<0-- for2

for cr > 0.

(27)

Equation (26) represents a series of step functions
each of height 1. An equivalent representation of
(26) and (27), leaving out the points with cr- 0 is

27r. (26) 0 0 mod 2r, (28)

where it is understood that an integer n is chosen
such that

05 mod 2r 0 2rn (29)
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so that

0 _< 0- 2n-n < 27r. (30)

Lumping all steps following (22) together, and
doing the same with the equation for 2, we obtain

1 _qt_ ")/@1 zi(2 @2 mod 27r) + Ct + B1 (t),
(3)

2 -F ")/02 (@1 @1 mod 2c) -+- Ct -+- B2(t),
(32)

where ei A/(2rc). Since we are particularly inter-
ested in phase-locking, i.e. 02 51, we introduce the
corresponding equation

+ 05 ei(0 5 mod 2re) + Ct.

We further put

@-0+{j, J- 1,2. (34)

Subtracting (33) from (32), we obtain

2 @ ")/2 --zzi[ @ mod 2re ((0 +
(0 + {1)mod 2rr)] + B2. (35)

A corresponding equation results for {1 and each of
the following transformations must be performed
also with that equation. We abbreviate the square
bracket in (35) by k(0,{) and integrate (35) over
time observing {2(0)= 0

2(1) e-(t-cT)B2(o- de,

i e-V(’-)k(b, {)dv. (36)

In this section we shall assume that Bj is bounded
and small enough so that

I{j <re, j- 1,2. (37)

We first assume that , > o (3)

holds. We study the properties of k in (36) and first
assume { >_ 0"

(1) be 27rn < 0 < 2rc(n + 1),

2rm < + { < 2rc(n + 1),
where n are integers, (39)

then

(2) (because of > 0)

k- 0 (40)

2-n < q5 < 2rc(n + 1),

2( + ) < + , < 2( + 2),

(41)

(42)

k- - ((- 271-/7) ((-+- 1)
( -- 1 -}- 2rr(n -+- 1)) -2re (43)

()

’1 O, (44)

k- 0 independent of interval n.

We assume that O(t) increases monotonously. We
study the behavior of ec(t) in (36), beginning with

(1)

;o 0, , (o) o

for

>0, ,()>0,

(2)

and conditions (39) and (40) are fulfilled till a
time ti-. Till then k- 0,

fort7_<t, {(t)>O, k--2-, and

e-V(t-v)(t) -2re do-

2 (1 e-n(’- )) do-; (45)
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(3) Subtracting (51) from (50) yields

l (tff) O. If l is small (and 05 differentiable), we
may assume

(4)

(a) either l(t-)-0 ((condition 3)(44)), and
same procedure as before, or

(b) (t-) > 0 and condition 1(39) fulfilled so
that k 0,

(t) 2rCe-n’(e%+ e’r’-); (46)

we may proceed in analogy to 2 and obtain

For t[+ < < t[+, the general result reads

e-n’ Z(ent2

(48)

For later purposes, we quote an alternative repre-
sentation of ec(t), namely

2rr
n(t) e-’r(t-) 8(o- te+)

x (1 en(’eT-’) )) do.. (49)

(52)

and further

8(V)(V + (V) o.

Thus we obtain

(53)

To the same degree of approximation we obtain

(V V)- "+-’--(1 1 (l). (54)

A closer inspection of our above procedure shows
that this holds both for tff < t and tff > t+, i.e.
for both positive and negative .1.
We are now in a position to discuss the effect of

(49) or (48) in our basic equation for l(t) (36). We
note that e-(’-) is the Green’s function of the
equation

+ q/ F(t),

i.e. (t) ( e-’r(t-)F(o.)do..
This allows us to transform (36) with (49) into the

equation

B2(t)@7 Z (5(t-t?)(1 e(te--te+)).

(55)

Using (54) and the property of the (5-function, we
obtain

Let us discuss the times t and tff in more detail.
These times are defined by

t# 4( 2) + 2) 2rcn,

t+ t+ 2rm.

(50)

(51)

d2 q-")/2 9(12)

{1- exp(-/q(t)-l, (t)) }, (56)

where we made the approximation
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Because of its r.h.s., (56) and the equation with
indices and 2 exchanged are highly nonlinear
equations for j(t) that can be solved only numeri-
cally. If ’y(t)-l! is small, however, (56) and its
corresponding equation acquire a very simple form,
namely

2 @ "Y2 D(/’)I nt- 92 (t),

1 @ "TI D(I)2 _qt_ B1 (t),
(57)

where a A-’ and D(t) ,/(5(t- t[-), which is
a known function, where t+ is defined by 5(t+)
2rcl. Adding or subtracting Eq. (57) from each
other, we obtain

where

1 -[- 2, B+ B + B2

and

+ 7c -aD(t) + B, (58)

where -& 1, B- B2 B1, respectively.

PHASE RELAXATION AND THE
IMPACT OF NOISE

In the preceding section we derived equations for
the phase-deviation {j(t) from the phase-locked
state. Equation (58) refers to the phase-difference

2 1 52 1 and reads (with B 0)

(t) + 7(t) -aZ 8(t &)(t). (59)

In the following we again use the abbreviation:

A/- a. (60)

Because of the &functions in (59), q is to be taken at
the discrete times tn. Because the phase q5 refers to
the steady state, a in (60) is a constant. We first

study the solution of (60) in the interval

(61)

and obtain

(62)

At times tn we integrate (59) over a small interval
around t, and obtain

{(l. + e) {(t. e) a{(& e). (63)

Since { undergoes a jump at time t, there is an

ambiguity with respect to the evaluation of the last
term in (63). Instead of t e we might equally well
choose t, + e or an average over both expressions.
Since we assume, however, that a is a small quan-
tity, the error is of higher order and we shall, there-
fore, choose at t, e as shown in Eq. (63). (Taking
the average amounts to replacing (l-a) by
(1- a/2)/(1 + a/2).) On the r.h.s, of (63), we insert

(62) for t, + e and thus obtain

c(& _+_ () (1 a){(t,_l q- )e (64)

Since the t/s are equally spaced, we put

t.- t._, A. (65)

For the interval

the solution reads

tN < < IN+I (66)

%c(t) (to -t- )(1 a)Ne-TA’N-7(t-tN). (67)

Since the absolute value of 1- a is smaller than
unity, (67) shows that the phase deviation {(t) relaxes
towards zero in the course of time.
We now study the impact of noise in which case

Eq. (59) becomes

4(t) + 7{(t) -. (68)
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In the interval

tn-1 < < tn (69)

the general solution of (68) reads

()- (._, + )e-(-o-/+ e-(-/e() d.
-I

(70)

We first treat the case that B(t) is nonsingular. At
time t,, the integration of (68) over a small time
interval yields

(t. + ) (t ) <(t ). (71)

We put t- t. e in (70) and thus obtain

+ e-7(t"-/B(o.) do-.
ln-

(72)

We now replace the r.h.s, of (71) by means of (72)
and obtain

(t, + e) (1 a){(&_ + e)e-Tzx +/)(&)},
(73)

where we abbreviated the integral in (72) by /.
Introducing the variable x instead of , we can
rewrite (73) in an obvious manner by means of

x (1 a){x_e-7zx +/)}. (74)

To solve the set of Eq. (74), we make the substi-
tution

x, ((1 a)e-zx)y (75)

and obtain a recursion formula for y,

Yn Yn-1 (1 a)-n+le7t"n. (76)

Summing up over both sides of (76), we obtain

N N

Z(Yn Yn-) Z(1 a)-n+leTt’n,
n=l n--1

(77)

or written more explicitly

N

a) -n+lYN YO + Z(1 CB(o-) do-. (78)
n=l -I

By means of (75), we obtain the final result in the
form (with t- t_ A)

XN YO ((1 a)e-Tzx) N
N

a)N-n+l e-TAN+ Z(1 CB(o-) do..
n=l tn-1

(79)

In order to evaluate (79), we need the stochastic
properties of B. Before we proceed further, we dis-
cuss the case in which B(t) is singular, for instance
of the form

6(t- t,o). (8o)

For t<t0 we can proceed in analogy to the
Eqs. (59)-(67). For

t &o. (81)

the integration of Eq. (68) around &0 yields

(tno + e) (tno ) a(t.o e) + B (82)

and in between the singularities we have as solution
of (68),

(83)

To be still more specific let us assume that for

< t. (84)

the solution reads

e(t,) -o. (85)

Then instead of (82), we obtain

sc(t.o + e) B. (86)
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which means that we now proceed as we did it
following Eq. (59), namely (86) acts just as initial
condition.
We now treat the case in which B is time inde-

pendent. The integral in (79) can immediately be
evaluated and we obtain

)NXN YO ((1 a)e-Tzx

U

n=l ")/
(87)

The explicit evaluation of that sum is a simple
matter and we obtain (with x0 Y0)

B
XN X0(1 a)Ne-TAN -Jr- --(e7A |)

(1 a)Ue-TAN
X

(1 a)e-7/x (88)

It tells us that the effect of the perturbation persists,
and that Xu eventually acquires a constant value.
We now turn to the case in which B is a stochastic

function of time, where we shall assume that the
statistical average over B vanishes. In the following
we shall study the correlation function for the case
N large, and

IN- N’I finite. (89)

Using (79), the correlation function can be written
in the form

XNXN’

N N

--ZZ(I_a)N-n+le-TAN(I_a)N’-n’+l

n=l n=l

(90)

We evaluate (90) in the case

N’>N (91)

and assume further that B is &correlated with
strength Q. Then (90) acquires the form

(92)

The evaluation of the sum in (92) is straightforward
and yields

Q
(e2zx 1){ (1 a)-2e27/x }-1

27
x (1 a)N’-Ne-’x(u’-u), (93)

which for

a << 1, (94)

can be written as

R e-(TA+a)(N’-N) Q. (95)
27

The correlation function has the same form as we
would expect it from a purely continuous treatment
of the Eq. (68), i.e. in which the &functions are
smeared out.

TWO NEURONS: EXPLICIT SOLUTION
OF THE PHASE-LOCKED STATE

In the preceding section we studied a variety of
deviations from the phase-locked state, ofwhich we
needed only a few general properties. In this section
we wish to explicitly construct that function. Its
equation is of the form

+7-Af()+C. (96)

By making the transformation- Ct + X ct + X, (97)
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we can cast (96) into

+ 7;;4 Af(x + ct). (98)

We note that X is continuous everywhere

X(t + e) X(t- e). (99)

On the other hand, because of the singular chara-
cter of (12), which is explicitly expressed by (14) and
(15), integrating (98) over the time-interval
(tn + 6, + -- (), we immediately obtain

)(/n+l / ) 2(/n+l ) A for t-/n+l.

(100)

On the other hand, for the time-interval tn / e <
<_ tn + --E, we obtain

2 + 7; 0, ;(t) ;(tn + e). e-n(t-"). (101)

Using (101) in (100), we obtain the recursive
relation

2(tn+l / e) ;(tn / e)e-(t"+l-t") + A. (102)

We first assume that the times t at which the jumps
of the derivatives of the phase occur are given
quantities. In the following we shall study (102)
explicitly. We first introduce the abbreviations

( 03)

that allows us to cast (102) into the form

Xn+l xne-7(tn+l-tn) / A. (104)

By using the substitution

xe7t" y, (105)

we cast (104) into the form

Yn+l Yn AeYt’+l. (106)

Summing (106) over both sides, yields

N-1 N-1

Z(Yn+l-yn)--ZAeT"+’
n=0 n=0

N

Z Aentn ZN, (107)
n=l

or because of the cancellation of terms on the 1.h.s.
of (107)

YN YO / ZN. (108)

Because of (105), (108) can be cast into the form

N

XN e-Ttux0 / Ae-7(’u-t’) (109)
n=l

Note that

XN 2(tN / 6). (1 10)

Because the dependence of the jump-times on the
phases q5 is not specified, the solution (109) is valid
quite generally. Introducing a time T so that

tN < T < tN+l (111)

holds, we may write x(T) at that general time in the
form

x(T) e-n(r-’N)X(tN). (112)

We now study the relationship between the jump-
times or their difference, i.e.

t+ tn (113)

and the phase. According to (12) and (13), the
jumps occur at time intervals (113) so that

+
(-) dq- 27r (114)

holds. Because of (97), (101) and (103), we obtain

c + +
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Inserting this relation into (114), we obtain

(1 e-7(t"+-t")-- X tn -- 6 - 2r, (116)

which is an equation for (113) provided x(t, + )
is known. For a small damping constant of the
dendritic currents, we expect

7(t.+,- t.) << 1. (117)

Under this condition, (116) acquires the form

(t.+l t.)(c + x(t, + e)) 2r, (118)

or, because of (115), the form

27l
(t,+l-tn)= (119) and

Equation (119) tells us that the sequence of jump-
times is inversely proportional to the speed of the
phase, which is quite a reasonable result.

Let us now consider the steady state in which

+ x(t. + (120)

holds. This implies that even in the general case

(116) the jump-times are equidistant

tn+l tn /k equidistant. (121)

This allows us to perform the sums that occur
in (107) and (109) explicitly and the solution of
Eq. (98) can be written as

X(tN + e) e--/’UXl (to) + A
e-TNA

(122)

whereby we use the abbreviation (110). When we

ignore transients, i.e. consider the steady state, (122)
simplifies to

X X(IN @- 6) A(1 e-’zx) -1. (123)

From (115) we then obtain

b(tn + e) c + A(1 e-’zx) -1. (124)

Because of the coupling HA, the phase velocity is
increased. We can now determine A explicitly. We
insert x(t,) according to (123) into (116) and obtain

A--l(27r-e -:). (125)

Clearly, the coupling strength A must be sufficiently
small, i.e. A < 27r7.

So far we calculated the time-derivative of X. It is
a simple matter to repeat all the steps done before
so that we are able to derive the results for X at time

TN and also for b at TN. Under the assumption of
equidistant jumps, we obtain

X(tN) x(to) -_ 2(t0)(1 e-TNA) (126)

(/)(tN) X(tO)+ ;(to)(1 -e-N/X). (127)

Under the choice of the initial time, such that

X(to) )(t0) 0, (128)

we obtain in the limit of time oc, i.e. for the
steady state,

_IAN+CNA A
(129)c(tu)- 7 e_7/x.

FREQUENCY PULLING AND MUTUAL
ACTIVATION OF TWO NEURONS

We generalize Eq. (96) to those for two coupled
neurons

(1 -- ")/(1 Af(b2)+ C, (130)

2 + 72 A/(cbl)+ C2. (131)

In analogy to (97) we make the substitution

Cjt + Xj cjt + j- 2 (132)-4 x.:
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and obtain

21 + /;1 Af(x2 + c2t),

22 q- Y22 Af(x1 q- Cl t). (134)

Because of the cross-wise coupling in (130) and
(131), the jump-times of 21 are given by t(2) and
those of 22 by t(n1). Otherwise we may proceed as
in Section 4 and obtain for

tff)’ +e< t< t(2)
n+l

)1 (t) )1 (t(2) + e)e-’(’-’2>), (136)

and, correspondingly for

t(,,1) + e < < t(1)
n+l --e, (137)

2 2(t(n1) + )e-7(t-tl)). (138)

Furthermore we obtain the recursive equations
(compare (102))

(139)

kn+l @

(1) )e-7(t(. -tl)=)2(tn + )+A. (140)

Under steady-state conditions, where

(1) t(n1) /k ,(2) /,(n2) ,/k2n+ 1, n+ (141)

and

we obtain

Xl Xl (t(N2) + e) A(1 e-’zx) -’,

(142)

(143)

(144)

X2 X2(t(N1) q- (;) A(1 e-nZXl) -1. (145)

We now have to determine A and A2, which, in
analogy to (114), are defined by

1/
dt 2re, (146)

ot,(2t2+) 2 dt 2r. (147)

When evaluating (146) and (147), we must observe
that (136) and (138), and thus qS1, q52 are defined
only on intervals. To make our analysis as simple as
possible (whereby we incidentally capture the most
interesting case), we assume

]")/’/11 1, ]")//2 << 1. (148)

Then (146) and (147) read

clA1 + ;1A1 2-, (149)

c2A2 q-- 22/N2 2rv, (150)

respectively, which because of(144), 145), and (148)
can be transformed into

clA1 +-- 2re, (151)
")/ /2

A /N2C2/X2 q-- 2rr. (152)

Let us discuss these equations in two ways:

(1) We may prescribe ’/1 and A2 and determine
those C1, C2 (that are essentially the neural
inputs) that give rise to A, A2.

(2) We prescribe c and c2 and determine A, A2.
Since w#= 27r/A. are the axonal pulse frequen-
cies, we express our results by those

col 2rr
(c127r + c2A//)
47t.2 A2//2 (153)

602 2re
(clA/’)’ q- c227r)
47r2 A2/,72 (154)
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Their difference and sum are particularly simple

C2 C1
CO2 CO1 q- A/ {,Z

(155)

and subtract (158) from (157) which yields

+% +   //mod
k

+ qS(mod 2re) } + hj(t),
C1 @C2

CO1 -t-- CO2 (156)+ A/(2rcT) where

These results exhibit a number of remarkable feat-
ures of the coupled neurons: according to (156)
their frequency sum, i.e. their activity is enhanced
by positive coupling A. Simultaneously, according
to (155) some frequency pulling occurs. According
to (153), neuron becomes active even for vanish-
ing or negative cl (provided Ic127r < c2A/9,), if
neuron 2 is activated by c2. This has an important
application to the interpretation of the perception
ofKaniza figures, and more generally to associative
memory, as we shall demonstrate elsewhere.

6 MANY COUPLED NEURONS

The case oftwo neurons can be generalized to many
neurons. The corresponding equations read

+ Tcj ZAj{k qS(mod 2re)}
k

+ Gt + 57)

where j= 1,... ,N. Note that the coefficients Ajk
may be positive or negative according to excitatory
or inhibitory couplings. In analogy to (33) we intro-
duce a reference function qS, i.e. the phase-locked
state, by means of

where

+ 7q5 A { q5 qS(mod 2re)} + Ct,

A Z Ajk (159)
k

is assumed to be independent ofj. We put

@ q5 + j (160)

(161)

(162)

The formal solution of (161) reads

}t/ j(0)e-Tt + e-7(-)hj(cr) act

+ Z Ajknj(t),
k

(163)

where j(t) is the obvious generalization of t(t) in
(36). Its evaluation for small I’Y{kl yields, in analogy
to the results (49), (55), and (56)

j + "y{j D( t) Z ajkk q- hj( t), (164)
k

where ajk A/k27r(t-:) is independent of index l,
because of stationarity of qS, and

D(t) 8(t- t-), (165)

where t+ is defined by qS(tl)- 2re/, integer.
The set of linear differential equations (164) can

be solved by the standard procedure. We introduce
eigenvectors with components v so that

v;ajk AV; (166)
J

and put

v{j rl, (167)
J

(168)

This allows us to transform (164) into the
uncoupled equations

(169)

Their solution can be obtained as in Section 3.
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MANY NEURONS WITH DIFFERENT
INPUT STRENGTHS

Generalizing the notation of the previous section,
whereby we distinguish the different neurons by
an index j, we first put

x 2, e 2e + ce xe + ce. (170)

The equations for xa then read

kj + yxj Z Ajef(4e). (171)

Since (171) is, at least from a formal point of view,
a linear equation in xj., we make the hypothesis

and require

2}e) + 7x}e) Aie f(e). (173)

Under the assumption of equidistant jumps and
steady state, we may exploit the results of Sections 4
and 5 and obtain as solution of (173) the relation

XSg)(IN(g) -+- ) mjg(1 e-VZxe)- (174)

or for an arbitrary time with tN(D+e<T<
tN(l) + -(

x}g)(T) e-r(r-tN(e))Aje(1 e-’r/xe) -1 (175)

Using (172), we obtain the final result

x(T) e-(T-tulel)Aje(1 e-7Zxe)- (176)

The jump-intervals are determined by

e(r) dcr 27r. (177)

In order to evaluate the integral in (177), we use

(170) and (176), where under the assumption

Y(tu(6)+l tN(6)) << 1, (178)

(176) can be approximated by

xj Z Aj6,/(7A6,). (179)

Thus we obtain (generalizing (151) and (152))

c6A6 + AeZ A6e,/(q’Ae,) 27r. (180)
6’

These equations relate the axonal pulse frequencies
cot- 27r/Az to the strengths of the sensory inputs, cz.
The corresponding equations for a:z are linear and
read

c6 + Aee, / (2rT)cve, 6. (181)

They can be solved under the usual conditions.
Depending on the coupling coefficients Aa,, even
those 0: may become nonzero, for which c[ 0. On
the other hand, only those solutions are allowed for
which o:[ > 0 for all 1. This imposes limitations on c
and A[z,.

CONCLUDING REMARKS AND
OUTLOOK

In the above paper I treated a model that is highly
nonlinear because of the dependence of the 6-
functions on the phases qS. Nevertheless, at least in
the limit of small dendritic damping, I could solve
it explicitly. This model contains two thresholds.
The first threshold is the conventional one where
one assumes that below it the neuron is quiescent,
whereas above threshold the neuron fires. It was
assumed that the network operates below its sec-
ond threshold, where we expect pronounced satura-
tion effects on the firing rates. Probably this region
has to be explored in more detail. Also the case that
the dendritic damping is not small might deserve a
further study. Preliminary considerations show that
here chaotic firing rates must be expected.
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