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1. Introduction and preliminaries

Let (X, d) be a metric space and D ⊂ X. A mapping T : D → X is said to be nonexpansive if

d(Tx, Ty) ≤ d(x, y), ∀x, y ∈ D, (1.1)

and it is said to be weakly contractive if

d(Tx, Ty) ≤ d(x, y) − ψ(d(x, y)), ∀x, y ∈ D, (1.2)

where ψ : [0,∞) → [0,∞) is continuous and nondecreasing such that ψ is positive on (0,∞),
ψ(0) = 0, and lim t→∞ψ(t) = ∞.

It is evident that T is contractive if it is weakly contractive with ψ(t) = (1 − α)t, where
α ∈ (0, 1), and it is nonexpansive if it is weakly contractive.

As an important extension of the class of contractive mappings, the class of weakly con-
tractive mappings was introduced by Alber and Guerre-Delabriere [1]. In Hilbert and Banach
spaces, Alber et al. [1–4] and Rhoades [5] established convergence theorems on iteration of
fixed point for weakly contractive single mapping.
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Inspired by [2, 5, 6], the purpose of this paper is to study a family of commuting non-
expansive mappings, one of which is weakly contractive, in arbitrary complete metric spaces
and Banach spaces.

We will establish some convergence theorems for the iterations of types Krasnoselski-
Mann, Kirk, and Ishikawa to approximate a common fixed point and to give their error esti-
mates.

Throughout this paper, we assume that F(T) is the set of fixed points of a mapping T ,
that is, F(T) = {x : Tx = x}; Φ is defined by the antiderivative (indefinite integral) of 1/ψ(t)
on (0,+∞), that is, Φ(t) =

∫
dt/ψ(t), and Φ−1 is the inverse function of Φ.

We define iterations which will be needed in the sequel.
Suppose that X is a metric space and D ⊂ X, {Tr}kr=0 is a family of commuting self-

mappings ofD and x0 ∈ D. The iteration {xn}∞n=0 ⊂ D of type Krasnoselski-Mann (see [7, 8]) is
cyclically defined by

x1 = T1x0, . . . , xk = Tkxk−1, xk+1 = T0xk,

xk+2 = T1xk+1, . . . , x2(k+1) = T0x2k+1, x2(k+1)+1 = T1x2(k+1), . . . .

(1.3)

For convenience, we write

xn = Tn(mod k+1)xn−1, (1.4)

where the modk + 1 function takes values in {0, 1, 2, . . . , k}.
Let D be a closed convex subset of the normed space X. Then the iteration {xn}∞n=0 ⊂ D

of type Kirk (see [5, 9]) is defined by

xn = Snx0, n = 1, 2, S =
k∑

i=0

aiTi, a0 > 0, ai ≥ 0 (i = 1, 2, . . . , k),
k∑

i=0

ai = 1. (1.5)

Again, the iteration {xn}∞n=0 ⊂ D of type lshikawa with error (see [10–12]) is defined by

xn+1 =
(
1 − an1 − bn1

)
xn + an1T1yn1 + bn1un1,

yn1 =
(
1 − an2 − bn2

)
xn + an2T2yn2 + bn2un2,

...

yn(k−1) =
(
1 − ank − bnk

)
xn + ankTkynk + bnkunk,

ynk =
(
1 − an0 − bn0

)
xn + an0T0xn + bn0un0,

(1.6)

where {uni}∞n=0 ⊂ D (i = 0, 1, . . . , k), {ani}∞n=0 ⊂ [0, 1], {bni}∞n=0 ⊂ [0, 1] (i = 0, 1, . . . , k), and

max
0≤i≤k

(
ani + bni

) ≤ 1 (n = 0, 1, 2, . . . ). (1.7)

We will make use of following result in theproof of Theorem 2.4.
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Lemma 1.1 (see [12]). Suppose that {ρn}, {σn} are two sequences of nonnegative numbers such that
ρn+1 ≤ ρn + σn, for all n ≥ n0. If

∑∞
n=0σn <∞, then lim n→∞ρn exists.

2. Main result

Theorem 2.1. Let (X, d) be a complete metric space and let {Tr}kr=0 be a family of commuting self-
mappings, where Ti (i = 1, 2, . . . , k) are all nonexpansive and T0 is weakly contractive, then there is a
unique common fixed point p ∈ ⋂ k

r=0F(Tr) and the iteration {xn} of type Krasnoselski-Mann generated
by (1.4) converges in metric to p, with the following error estimate:

d
(
xn, p

) ≤ Φ−1
(
Φ
(
d
(
x0, p

)) −
[

n

k + 1

])
(n = 0, 1, 2, . . . ), (2.1)

where [n/(k + 1)] is the Gauss integer of n/(k + 1).

Proof. The uniqueness of fixed point of T0 is clear from (1.2). Hence, the common fixed point
of {Tr}kr=0 is unique. Let X0 be an arbitrary point in X and let {xn} be an iteration of type
Krasnoselski-Mann generated by (1.4). Since {Tr}kr=0 is commutative, then we have

∏ k
r=0Tr =

(
∏ k

r=1Tr)T0. Suppose that n = i(mod k + 1) and [n/(k + 1)] = j. Then,

xn = xj(k+1)+i =

(
k∏

r=0

Tr

)

x(j−1)(k+1)+i (i = 0, 1, 2, . . . , k, j = 1, 2, . . . ). (2.2)

Write yj = xj(k+1)+i for fixed i. Then {yj}∞j=0 is a subsequence of {xn}. Since
∏ k

r=1Tr is nonex-
pansive and T0 is weakly contractive, then we obtain

d
(
yj+1, yj

)
= d

((
k∏

r=1

Tr

)

T0yj,

(
k∏

r=1

Tr

)

T0yj−1

)

≤ d(T0yj, T0yj−1
) ≤ d(yj, yj−1

) − ψ(d(yj, yj−1
))
,

(2.3)

which shows d(yj+1, yj) ≤ d(yj, yj−1), that is, {d(yj+1, yj)}∞j=0 is a nonincreasing sequence of
nonnegative real numbers. Therefore, it tends to a limit d ≥ 0. If d > 0, then, by nondecreasity
of ψ, ψ(d(yj+1, yj)) ≥ ψ(d), for all j ≥ 0. Thus, from (2.3) it follows that

d
(
yj+k+1, yj+k

) ≤ d(yj+1, yj
) − kψ(d), (2.4)

a contradiction for k large enough. Therefore,

lim
j→∞

d
(
yj+1, yj

)
= 0. (2.5)

By (2.5), for any given ε > 0, there existsN such that

d
(
yj+1, yj

)
< min

{
ε

2
, ψ

(
ε

2

)}
, ∀j ≥N. (2.6)

We claim that

d
(
yj+m, yj

)
< ε, ∀m ≥ 1, ∀j ≥N. (2.7)
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In fact, from (2.6) we see that (2.7) holds when m = 1. Suppose that d(yj+m−1, yj) < ε. If
d(yj+m−1, yj) < ε/2, then from (2.6)we get

d(yj+m, yj) ≤ d(yj+m, yj+m−1) + d(yj+m−1, yj) <
ε

2
+
ε

2
= ε. (2.8)

If d(yj+m−1, yj) ≥ ε/2, then ψ(d(yj+m−1, yj)) ≥ ψ(ε/2),we also get

d
(
yj+m, yj

) ≤ d(yj+m, yj+1
)
+ d

(
yj+1, yj

)

= d

((
k∏

r=0

Tr

)

yj+m−1,

(
k∏

r=0

Tr

)

yj

)

+ d
(
yj+1, yj

)

≤ d(yj+m−1, yj
) − ψ(d(yj+m−1, yj

))
+ d

(
yj+1, yj

)

< ε − ψ
(
ε

2

)
+ ψ

(
ε

2

)
= ε.

(2.9)

Therefore, by induction we derive that (2.7) holds. Since ε is arbitrary, {yj} is a Cauchy se-
quence. As X is complete, we have

lim
j→∞

xj(k+1)+i = pi ∈ X (i = 0, 1, 2, . . . , k). (2.10)

Observe that Ti (i = 0, 1, 2, . . . , k) are all continuous, so is
∏ k

r=0Tr . From (2.10), it follows that
(

k∏

r=0

Tr

)

pi = lim
j→∞

(
k∏

r=0

Tr

)

xj(k+1)+i = lim
j→∞

x(j+1)(k+1)+i = pi (i = 0, 1, 2, . . . , k), (2.11)

Ti+1pi = lim
j→∞

Ti+1xj(k+1)+i = lim
j→∞

xj(k+1)+(i+1)=pi+1
(
i = 0, 1, 2, . . . , k; Tk+1 = T0; pk+1 = p0

)
(2.12)

By (1.1), (1.2), and (2.11), we deduce

d
(
ps, pt

)
= d

((
k∏

r=0

Tr

)

ps,

(
k∏

r=0

Tr

)

pt

)

≤ d(ps, pt
) − ψ(d(ps, pt

))
, ∀t /= s ∈ {0, 1, 2, . . . , k},

(2.13)

which shows

ps = pt, that is, pi = p (i = 0, 1, 2, . . . , k). (2.14)

From (2.12), it implies that p is a common fixed point of {Tr}kr=0, that is, p ∈ ⋂ k
r=0F(Tr). Hence,⋂ k

r=0F(Tr) = {p}. By (2.10) and (2.14), we conclude lim n→∞xn = p. Set αj = d(xj(k+1), p). From
(2.3), we have

αj ≤ αj−1 − ψ
(
αj−1

)
, ∀j ∈ Z+. (2.15)

Since ψ is continuous and nondecreasing, using (2.15), it yields

Φ
(
αj−1

) −Φ
(
αj
)
=
∫αj−1

αj

dt

ψ(t)
≥ αj − αj−1
ψ
(
αj−1

) ≥ 1,

αj ≤ Φ−1(Φ
(
α0
) − j).

(2.16)
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Observe that

d
(
xn, p

)
= d

(
xj(k+1)+i, p

)
= d

(
Ti · · · T2T1xj(k+1), Ti · · · T2T1p

)

≤ d(xj(k+1), p
)
, 1 ≤ i ≤ k. (2.17)

From (2.16) and (2.17), we obtain the error estimate (2.1). This completes the proof.

Remark 2.2. If Ti = I (i = 1, 2, . . . , k) in Theorem 2.1, where I is the identity mapping of X,
then we conclude that the sequence {xn} converges to the unique common fixed point p of
weakly contractive mapping T0, with the error estimate d(xn, p) ≤ Φ−1(Φ(d(x0, p) − n)), where
xn = Tn0 x0. Thus, our Theorem 2.1 is a generalization of the corresponding theorem of Rhoades
[5].

Theorem 2.3. Let X be a Banach space and let D ⊂ X be a nonempty closed convex set. Let {Tr}kr=0
be a family of commuting self-mappings, where Ti : D → D, (i = 1, 2, . . . , k) are all nonexpansive and
T0 : D → D is weakly contractive. Then, for any x0 ∈ X, the iteration {xn} of type Kirk generated
by (1.5) converges strongly to a unique common fixed point p ∈ ⋂ k

i=0F(Tr), with the following error
estimate:

∥∥xn+1 − p
∥∥ ≤ a0Φ−1

[
1
a0

Φ

(
k∑

i=0

ai
∥∥Tix0 − p

∥∥
)

− n
]

(n = 1, 2, . . . ). (2.18)

Proof. Applying Theorem 2.1, we can suppose that p is a unique common fixed point of {Tr}kr=0.
Since

Sp =

(
k∑

i=0

aiTi

)

p =
k∑

i=0

ai
(
Tip

)
=

k∑

i=0

aip = p, (2.19)

we derive that p is a fixed point of S. Since Ti (i = 1, 2, . . . , k) are all nonexpansive, T0 is weakly
contractive, and a0 /= 0, then we have

‖Sx − Sy‖ =

∥∥∥∥∥

k∑

i=0

ai
(
Tix − Tiy

)
∥∥∥∥∥
≤

k∑

i=0

ai
∥∥Tix − Tiy

∥∥

≤ a0‖x − y‖ − a0ψ
(‖x − y‖) +

k∑

i=1

ai‖x − y‖

= ‖x − y‖ − a0ψ
(‖x − y‖).

(2.20)

The inequality (2.20) shows that S is weakly contractive. Thus, p is a unique fixed point of S.
Set ψ1 = a0ψ. Then,

Φ1 =
1
a0

Φ, Φ−1
1 = a0Φ−1, (2.21)

and {xn} converges to p with the following error estimate (see Remark 2.2):
∥
∥xn+1 − p

∥
∥ ≤ Φ−1

1

[
Φ1

(∥∥x1 − p
∥
∥) − n]. (2.22)

Observe that

∥∥x1 − p
∥∥ =

∥∥Sx0 − p
∥∥ ≤

k∑

i=0

ai
∥∥Tix0 − p

∥∥. (2.23)

From (2.21)–(2.23), we obtain (2.18). This completes the proof.
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Theorem 2.4. Let X be a Banach space and let D ⊂ X be a nonempty closed convex set. Let {Tr}kr=0
be a family of commuting self-mappings, where Ti : D → D (i = 1, 2, . . . , k) are all nonexpansive and
T0 : D → D is weakly contractive. For any x0 ∈ D, let {xn} be the iteration of type Ishikawa generated
by (1.6), where

∞∑

n=0

k∏

i=0

ani = ∞,
∞∑

n=0

max
0≤i≤k

bni <∞, (2.24)

and {uni}∞n=0 ⊂ X (i = 0, 1, . . . , k) are all bounded. Then, {xn} converges strongly to a unique common
fixed point p ∈ ⋂ s

r=0F(Tr) with the following estimate:

∥∥xn+1 − p
∥∥ ≤ Φ−1

(

Φ
(∥∥x0 − p

∥∥) −
n∑

j=0

k∏

i=0

aji

)

+M
n∑

j=0

k∑

i=0

bji, (2.25)

whereM = max 0≤i≤ksup n≥1‖uni − p‖.

Proof. Applying Theorem 2.1, we can suppose that p is a unique common fixed point
of {Tr}kr=0. Since {uni} (i = 0, 1, . . . , k) are all bounded, we have M = max 0≤i≤k
sup n≥1‖uni −p‖ <∞. Since Ti (i = 1, 2, . . . , k) are all nonexpansive and T0 is weakly contractive,
we obtain in proper order that

∥∥ynk − p
∥∥ ≤ (

1 − an0 − bn0
)∥∥xn − p

∥∥ + an0
∥∥T0xn − p

∥∥ + bn0
∥∥un0 − p

∥∥

≤ (
1 − an0

)∥∥xn − p
∥∥ + an0

[∥∥xn − p
∥∥ − ψ(∥∥xn − p

∥∥)] + bn0M

≤ ∥∥xn − p
∥∥ − an0ψ

(∥∥xn − p
∥∥) + bn0M,

∥∥yn(k−1) − p
∥∥ ≤ (

1 − ank − bnk
)∥∥xn − p

∥∥ + ank
∥∥Tkynk − p

∥∥ + bnk
∥∥unk − p

∥∥

≤ (
1 − ank

)∥∥xn − p
∥∥ + ank

∥∥ynk − p
∥∥ + bnkM

≤ (
1 − ank

)∥∥xn − p
∥
∥ + ank

[∥∥xn − p
∥
∥ − an0ψ

(∥∥xn − p
∥
∥) + bn0M

]
+ bnkM

≤ ∥∥xn − p
∥∥ − an0ankψ

(∥∥xn − p
∥∥) +

(
bn0 + bnk

)
M,

...

∥∥yn1 − p
∥∥ ≤ ∥∥xn − p

∥∥ − an0
(

k∏

i=2

ani

)

ψ
(∥∥xn − p

∥∥) +

(

bn0 +
k∑

i=2

bni

)

M,

∥∥xn+1 − p
∥∥ ≤ (

1 − an1 − bn1
)∥∥xn − p

∥∥ + an1
∥∥T1yn1 − p

∥∥ + bn1
∥∥un1 − p

∥∥

≤ (
1 − an1

)∥∥xn − p
∥∥ + an1

∥∥yn1 − p
∥∥ + bn1M

≤ (
1 − an1

)∥∥xn − p
∥∥ + bn1M

+ an1

[
∥∥xn − p

∥∥ − an0
(

k∏

i=2

ani

)

ψ
(∥∥xn − p

∥∥) +

(

bn0 +
k∑

i=2

bni

)

M

]

≤ ∥∥xn − p
∥∥ −

(
k∏

i=0

ani

)

ψ
(∥∥xn − p

∥∥) +M
k∑

i=0

bni.

(2.26)

Write βn = ‖xn − p‖, θn =M
∑ k

i=0bni. Then
∑∞

n=0θn <∞, and (2.26) yields

βn+1 ≤ βn + θn, (2.27)
n∑

j=0

k∏

i=0

ajiψ
(
βj
) ≤

n∑

j=0

(
βj − βj+1

)
+

n∑

j=0

θj ≤ β0 +
n∑

j=0

θj . (2.28)
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From (2.27) and Lemma 1.1, it implies that lim n→∞βn exists, and so does lim n→∞ψ(βn)
by the continuity of ψ. From (2.28), it implies that

∑∞
n=0(

∏ k
i=0ani)ψ(βn) < ∞. Since

∑∞
n=0(

∏ k
i=0ani) = ∞, we conclude that lim n→∞ψ(βn) = 0. Therefore, lim n→∞βn = 0, that is,

xn converges strongly to p. To establish the error estimate, we set
∑ n

j=0θj = Γn and Γ−1 = 0.
Then, (2.26) yields

βn+1 ≤ βn −
(

k∏

i=0

ani

)

ψ
(
βn

)
+ Γn − Γn−1. (2.29)

Set λn = βn − Γn−1. From (2.29)we have

λn+1 ≤ λn −
(

k∏

i=0

ani

)

ψ
(
λn + Γn−1

)
. (2.30)

Since ψ is nondecreasing, from (2.30)we deduce

Φ
(
λn

) −Φ
(
λn+1

)
=
∫λn

λn+1

dt

ψ
(
t
) ≥ λn − λn+1

ψ
(
λn

) ≥ λn − λn+1
ψ
(
λn + Γn−1

) ≥
k∏

i=0

ani. (2.31)

Thus,

Φ
(
λ0
) −Φ

(
λn+1

)
=

n∑

j=0

[
Φ
(
λj
) −Φ

(
λj+1

)] ≥
n∑

j=0

k∏

i=0

aji,

λn+1 ≤ Φ−1
(

Φ
(
λ0
) −

n∑

j=0

k∏

i=0

aji

)

.

(2.32)

Hence, the estimate (2.25) holds. This completes the proof.
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