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We establish strong convergence of an implicit algorithm to a common fixed point of a finite family
of generalized asymptotically quasi-nonexpansive maps in CAT(0) spaces. Our work improves
and extends several recent results from the current literature.

1. Introduction

Ametric space (X, d) is said to be a length space if any two points ofX are joined by a rectifiable
path (i.e., a path of finite length), and the distance between any two points of X is taken to
be the infimum of the lengths of all rectifiable paths joining them. In this case, d is said to be
a length metric (otherwise known as an inner metric or intrinsic metric). In case no rectifiable
path joins two points of the space, the distance between them is taken to be ∞.

A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic from x to y) is a map
c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t − t′|
for all t, t′ ∈ [0, l]. In particular, c is an isometry, and d(x, y) = l. The image α of c is called a
geodesic (or metric) segment joining x and y. We say X is (i) a geodesic space if any two points
of X are joined by a geodesic and (ii) uniquely geodesic if there is exactly one geodesic joining
x and y for each x, y ∈ X, which we will denote by [x, y], called the segment joining x to y.

A geodesic triangleΔ(x1, x2, x3) in a geodesic metric space (X, d) consists of three points
in X (the vertices of Δ) and a geodesic segment between each pair of vertices (the edges of Δ).
A comparison triangle for geodesic triangle Δ(x1, x2, x3) in (X, d) is a triangle Δ(x1, x2, x3) :=
Δ(x1, x2, x3) in R

2 such that dR2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always
exists (see [1]).
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A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of
appropriate size satisfy the following CAT(0) comparison axiom.

Let Δ be a geodesic triangle in X, and let Δ ⊂ R
2 be a comparison triangle for Δ. Then

Δ is said to satisfy the CAT(0) inequality if for all x, y ∈ Δ and all comparison points x, y ∈ Δ,

d
(
x, y

) ≤ d
(
x, y

)
. (1.1)

Complete CAT(0) spaces are often called Hadamard spaces (see [2]). If x, y1, y2 are points of
a CAT(0) space and y0 is the midpoint of the segment [y1, y2], which we will denote by
(y1 ⊕ y2)/2, then the CAT(0) inequality implies

d2
(
x,

y1 ⊕ y2

2

)
≤ 1

2
d2(x, y1

)
+
1
2
d2(x, y2

) − 1
4
d2(y1, y2

)
. (1.2)

The inequality (1.2) is the (CN) inequality of Bruhat and Titz [3]. The above inequality has
been extended in [4] as

d2(z, αx ⊕ (1 − α)y
) ≤ αd2(z, x) + (1 − α)d2(z, y

) − α(1 − α)d2(x, y
)
, (1.3)

for any α ∈ [0, 1] and x, y, z ∈ X.
Let us recall that a geodesic metric space is a CAT(0) space if and only if it satisfies the (CN)

inequality (see [1, page 163]). Moreover, if X is a CAT(0) metric space and x, y ∈ X, then for
any α ∈ [0, 1], there exists a unique point αx ⊕ (1 − α)y ∈ [x, y] such that

d
(
z, αx ⊕ (1 − α)y

) ≤ αd(z, x) + (1 − α)d
(
z, y

)
, (1.4)

for any z ∈ X and [x, y] = {αx ⊕ (1 − α)y : α ∈ [0, 1]}.
A subset C of a CAT(0) space X is convex if for any x, y ∈ C, we have [x, y] ⊂ C.
Let T be a selfmap on a nonempty subset C of X. Denote the set of fixed points of T

by F(T) = {x ∈ C : T(x) = x}. We say T is: (i) asymptotically nonexpansive if there is a
sequence {un} ⊂ [0,∞) with limn→∞un = 0 such that d(Tnx, Tny) ≤ (1 + un)d(x, y) for all
x, y ∈ C and n ≥ 1, (ii) asymptotically quasi-nonexpansive if F(T)/=φ and there is a sequence
{un} ⊂ [0,∞) with limn→∞un = 0 such that d(Tnx, p) ≤ (1 + un)d(x, p) for all x ∈ C, p ∈ F(T)
and n ≥ 1, (iii) generalized asymptotically quasi-nonexpansive [5] if F(T)/= ∅ and there exist
two sequences of real numbers {un} and {cn} with limn→∞un = 0 = limn→∞cn such that
d(Tnx, p) ≤ d(x, p) + (1 + un)d(x, p) + cn for all x ∈ C, p ∈ F(T) and n ≥ 1, (iv) uniformly
L-Lipschitzian if for some L > 0, d(Tnx, Tny) ≤ Ld(x, y) for all x, y ∈ C and n ≥ 1, and (v)
semicompact if for any bounded sequence {xn} in C with d(xn, Txn) → 0 as n → ∞, there is
a convergent subsequence of {xn}.

Denote the indexing set {1, 2, 3, . . . ,N} by I. Let {Ti : i ∈ I} be the set of N selfmaps
of C. Throughout the paper, it is supposed that F =

⋂N
i=1 F(Ti)/=φ. We say condition (A) is

satisfied if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0
for all r ∈ (0,∞) and at least one T ∈ {Ti : i ∈ I} such that d(x, Tx) ≥ f(d(x, F)) for all x ∈ C
where d(x, F) = inf{d(x, p) : p ∈ F}.
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If in definition (iii), cn = 0 for all n ≥ 1, then T becomes asymptotically quasi-
nonexpansive, and hence the class of generalized asymptotically quasi-nonexpansive maps
includes the class of asymptotically quasi-nonexpansive maps.

Let {xn} be a sequence in a metric space (X, d), and let C be a subset of X. We say
that {xn} is: (vi) of monotone type(A) with respect to C if for each p ∈ C, there exist two
sequences {rn} and {sn} of nonnegative real numbers such that

∑∞
n=1 rn < ∞,

∑∞
n=1 sn < ∞

and d(xn+1, p) ≤ (1+ rn)d(xn, p) + sn, (vii) of monotone type(B)with respect to C if there exist
sequences {rn} and {sn} of nonnegative real numbers such that

∑∞
n=1 rn < ∞,

∑∞
n=1 sn < ∞

and d(xn+1, C) ≤ (1 + rn)d(xn, C) + sn (also see [6]).
From the above definitions, it is clear that sequence of monotone type(A) is a sequence

of monotone type(B) but the converse is not true, in general.
Recently, numerous papers have appeared on the iterative approximation of fixed

points of asymptotically nonexpansive (asymptotically quasi-nonexpansive) maps through
Mann, Ishikawa, and implicit iterates in uniformly convex Banach spaces, convex metric
spaces and CAT(0) spaces (see, e.g., [5, 7–16]).

Using the concept of convexity in CAT(0) spaces, a generalization of Sun’s implicit
algorithm [15] is given by

x0 ∈ C,

x1 = α1x0 ⊕ (1 − α1)T1x1,

x2 = α2x1 ⊕ (1 − α2)T2x2,

...

xN = αNxN−1 ⊕ (1 − αN)TNxN,

xN+1 = αN+1xN ⊕ (1 − αN+1)T2
1xN+1,

...

x2N = α2Nx2N−1 ⊕ (1 − α2N)T2
Nx2N,

x2N+1 = α2N+1x2N ⊕ (1 − α2N+1)T3
1x2N+1,

...,

(1.5)

where 0 ≤ αn ≤ 1.
Starting from arbitrary x0, the above process in the compact form is written as

xn = αnxn−1 ⊕ (1 − αn)T
k(n)
i(n) xn, n ≥ 1, (1.6)

where n = (k − 1)N + i, i = i(n) ∈ I and k = k(n) ≥ 1 is a positive integer such that k(n) → ∞
as n → ∞.
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In a normed space, algorithm (1.6) can be written as

x0 ∈ C, xn = αnxn−1 + (1 − αn)T
k(n)
i(n) xn, n ≥ 1, (1.7)

where n = (k − 1)N + i, i = i(n) ∈ I and k = k(n) ≥ 1 is a positive integer such that k(n) → ∞
as n → ∞.

The algorithms (1.6)-(1.7) exist as follows.
Let X be a CAT(0) space. Then, the following inequality holds:

d
(
λx ⊕ (1 − λ)z, λy ⊕ (1 − λ)w

) ≤ λd
(
x, y

)
+ (1 − λ)d(z,w), (1.8)

for all x, y, z,w ∈ X (see [17]).
Let {Ti : i ∈ I} be the set of N uniformly L-Lipschitzian selfmaps of C. We show that

(1.6) exists. Let x0 ∈ C and x1 = α1x0⊕(1−α1)T1x1. Define S : C → C by: Sx = α1x0⊕(1−α1)T1x
for all x ∈ C. The existence of x1 is guaranteed if S has a fixed point. For any x, y ∈ C, we
have

d
(
Sx, Sy

) ≤ (1 − α1)d
(
T1x, T1y

) ≤ (1 − α1)L
∥∥x − y

∥∥. (1.9)

Now, S is a contraction if (1 − α1)L < 1 or L < 1/(1 − α1). As α1 ∈ (0, 1), therefore S
is a contraction even if L > 1. By the Banach contraction principle, S has a unique fixed
point. Thus, the existence of x1 is established. Similarly, we can establish the existence of
x2, x3, x4, . . .. Thus, the implicit algorithm (1.6) is well defined. Similarly, we can prove that
(1.7) exists.

For implicit iterates, Xu and Ori [16] proved the following theorem.

Theorem XO (see [16, Theorem 2]). Let {Ti : i ∈ I} be nonexpansive selfmaps on a closed convex
subset C of a Hilbert space with F /=φ, let x0 ∈ C, and let {αn} be a sequence in (0, 1) such that
limn→∞αn = 0. Then, the sequence xn = αnxn−1 + (1 − αn)Txn, where n ≥ 1 and Tn = Tn mod N,
converges weakly to a point in F.

They posed the question: what conditions on the maps {Ti : i ∈ I} and (or) the
parameters {αn} are sufficient to guarantee strong convergence of the sequence in Theorem
XO?

The aim of this paper is to study strong convergence of iterative algorithm (1.6) for
the class of uniformly L-Lipschitzian and generalized asymptotically quasi-nonexpansive
selfmaps on a CAT(0) space. Thus, we provide a positive answer to Xu and Ori’s question for
the general class of maps which contains asymptotically quasi-nonexpansive, asymptotically
nonexpansive, quasi-nonexpansive, and nonexpansive maps in the setup of CAT(0) spaces.
It is worth mentioning that if an implicit iteration algorithmwithout an error term converges,
then the method of proof generally carries over easily to algorithmwith bounded error terms.
Thus, our results also hold if we add bounded error terms to the implicit iteration scheme
considered. Our results constitute generalizations of several important known results.

We need the following useful lemma for the development of our convergence results.
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Lemma 1.1 (see [14, Lemma 1.1]). Let {rn} and {sn} be two nonnegative sequences of real
numbers, satisfying the following condition:

rn+1 ≤ (1 + sn)rn ∀n ≥ n0 for some n0 ≥ 1. (1.10)

If
∑∞

n=1 sn < ∞, then limn→∞rn exists.

2. Convergence in CAT(0) Spaces

We establish some convergence results for the algorithm (1.6) to a common fixed point of a
finite family of uniformly L-Lipschitzian and generalized asymptotically quasi-nonexpansive
selfmaps in the general class of CAT(0) spaces. The following result extends Theorem XO; our
methods of proofs are based on the ideas developed in [15].

Theorem 2.1. Let (X, d) be a complete CAT(0) space, and letC be a nonempty closed convex subset of
X. Let {Ti : i ∈ I} beN uniformly L-Lipschitzian and generalized asymptotically quasi-nonexpansive
selfmaps of C with {uin}, {cin} ⊂ [0,∞) such that

∑∞
n=1 uin < ∞ and

∑∞
n=1 cin < ∞ for all i ∈ I.

Suppose that F is closed. Starting from arbitrary x0 ∈ C, define the sequence {xn} by the algorithm
(1.6), where {αn} ⊂ [δ, 1−δ] for some δ ∈ (0, 1/2). Then, {xn} is of monotone type(A) and monotone
type(B) with respect to F. Moreover, {xn} converges strongly to a common fixed point of the maps
{Ti : i ∈ I} if and only if lim infn→∞d(xn, F) = 0.

Proof. First, we show that {xn} is of monotone type(A) and monotone type(B) with respect to F. Let
p ∈ F. Then, from (1.6), we obtain that

d
(
xn, p

)
= d

(
αnxn−1 ⊕ (1 − αn)T

k(n)
i(n) xn, p

)

≤ αnd
(
xn−1, p

)
+ (1 − αn)d

(
T
k(n)
i(n) xn, p

)

≤ αnd
(
xn−1, p

)
+ (1 − αn)

[
d
(
xn, p

)
+ uik(n)d

(
xn, p

)
+ cik(n)

]

≤ αnd
(
xn−1, p

)
+
(
1 − αn + uik(n)

)
d
(
xn, p

)
+ (1 − αn)cik(n).

(2.1)

Since αn ∈ [δ, 1 − δ], the above inequlaity gives that

d
(
xn, p

) ≤ d
(
xn−1, p

)
+
uik(n)

δ
d
(
xn, p

)
+
(
1
δ
− 1

)
cik(n). (2.2)

On simplification, we have that

d
(
xn, p

) ≤ δ

δ − uik(n)
d
(
xn−1, p

)
+
(
1
δ
− 1

)
δ

δ − uik(n)
cik(n). (2.3)

Let 1 + vik(n) = δ/(δ − uik(n)) = 1 + uik(n)/(δ − uik(n)) and γik(n) = (1/δ − 1)(1 + vik(n))cik(n).
Since

∑∞
k(n)=1 uik(n) < ∞ for all i ∈ I, therefore limk(n)→∞uik(n) = 0, and hence, there exists a



6 Fixed Point Theory and Applications

natural number n1 such that uik(n) < δ/2 for k(n) ≥ n1/N + 1 or n > n1. Then, we have that∑∞
k(n)=1 vik(n) < (2/δ)

∑∞
k(n)=1 uik(n) < ∞. Similarly,

∑∞
k(n)=1 γik(n) < ∞.

Now, from (2.3), for k(n) ≥ n1/N + 1, we get that

d
(
xn, p

) ≤ (
1 + vik(n)

)
d
(
xn−1, p

)
+ γik(n), (2.4)

d(xn, F) ≤
(
1 + vik(n)

)
d(xn−1, F) + γik(n). (2.5)

These inequalities, respectively, prove that {xn} is a sequence of monotone type(A) and
monotone type(B) with respect to F.

Next, we prove that {xn} converges strongly to a common fixed point of the maps
{Ti : i ∈ I} if and only if lim infn→∞d(xn, F) = 0.

If xn → p ∈ F, then limn→∞d(xn, p) = 0. Since 0 ≤ d(xn, F) ≤ d(xn, p), we have
lim infn→∞d(xn, F) = 0.

Conversely, suppose that lim infn→∞d(xn, F) = 0. Applying Lemma 1.1 to (2.5), we
have that limn→∞d(xn, F) exists. Further, by assumption lim infn→∞d(xn, F) = 0, we conclude
that limn→∞d(xn, F) = 0. Next, we show that {xn} is a Cauchy sequence.

Since x ≤ exp(x − 1) for x ≥ 1, therefore from (2.4), we have

d
(
xn+m, p

) ≤ exp

⎛

⎝
N∑

i=1

∞∑

k(n)=1

vik(n)

⎞

⎠d
(
xn, p

)
+

N∑

i=1

∞∑

k(n)=1

γik(n)

< Md
(
xn, p

)
+

N∑

i=1

∞∑

k(n)=1

γik(n),

(2.6)

for the natural numbers m,n, where M = exp{∑N
i=1

∑∞
k(n)=1 vik(n)} + 1 < ∞. Since

limn→∞d(xn, F) = 0, therefore for any ε > 0, there exists a natural number n0 such that
d(xn, F) < ε/4M and

∑N
i=1

∑∞
j=n γij ≤ ε/4 for all n ≥ n0. So, we can find p∗ ∈ F such that

d(xn0 , p
∗) ≤ ε/4M. Hence, for all n ≥ n0 and m ≥ 1, we have that

d(xn+m, xn) ≤ d
(
xn+m, p

∗) + d
(
xn, p

∗)

< Md
(
xn0 , p

∗) +
N∑

i=1

∞∑

j=n0

γij +Md
(
xn0 , p

∗) +
N∑

i=1

∞∑

j=n0

γij

= 2

⎛

⎝Md
(
xn0 , p

∗) +
N∑

i=1

∞∑

j=n0

γij +Md
(
xn0 , p

∗)
⎞

⎠ ≤ 2
(
Mε

4M
+
ε

4

)
= ε.

(2.7)

This proves that {xn} is a Cauchy sequence. Let limn→∞xn = z. Since C is closed, therefore
z ∈ C. Next, we show that z ∈ F. Now, the following two inequalities:

d
(
z, p

) ≤ d(z, xn) + d
(
xn, p

) ∀p ∈ F, n ≥ 1,

d(z, xn) ≤ d
(
z, p

)
+ d

(
xn, p

) ∀p ∈ F, n ≥ 1
(2.8)
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give that

−d(z, xn) ≤ d(z, F) − d(xn, F) ≤ d(z, xn), n ≥ 1. (2.9)

That is,

|d(z, F) − d(xn, F)| ≤ d(z, xn), n ≥ 1. (2.10)

As limn→∞xn = z and limn→∞d(xn, F) = 0, we conclude that z ∈ F.

We deduce some results from Theorem 2.1 as follows.

Corollary 2.2. Let (X, d) be a complete CAT(0) space, and let C be a nonempty closed convex
subset of X. Let {Ti : i ∈ I} be N uniformly L-Lipschitzian and generalized asymptotically quasi-
nonexpansive selfmaps of C with {uin}, {cin} ⊂ [0,∞) such that

∑∞
n=1 uin < ∞ and

∑∞
n=1 cin < ∞

for all i ∈ I. Suppose that F is closed. Starting from arbitaray x0 ∈ C, define the sequence {xn} by the
algorithm (1.6), where {αn} ⊂ [δ, 1 − δ] for some δ ∈ (0, 1/2). Then, {xn} converges strongly to a
common fixed point of the maps {Ti : i ∈ I} if and only if there exists some subsequence {xnj} of {xn}
which converges to p ∈ F.

Corollary 2.3. Let (X, d) be a complete CAT(0) space, and let C be a nonempty closed convex subset
of X. Let {Ti : i ∈ I} beN uniformly L-Lipschitzian and asymptotically quasi-nonexpansive selfmaps
of C with {uin} ⊂ [0,∞) such that

∑∞
n=1 uin < ∞ for all i ∈ I. Starting from arbitaray x0 ∈ C, define

the sequence {xn} by the algorithm (1.6), where {αn} ⊂ [δ, 1 − δ] for some δ ∈ (0, 1/2). Then, {xn}
is of monotone type(A) and monotone type(B) with respect to F. Moreover, {xn} converges strongly to
a common fixed point of the maps {Ti : i ∈ I} if and only if lim infn→∞d(xn, F) = 0.

Proof. Follows from Theorem 2.1 with cin = 0 for all n ≥ 1.

Corollary 2.4. Let X be a Banach space, and let C be a nonempty closed convex subset of X. Let
{Ti : i ∈ I} be N asymptotically quasi-nonexpansive self-maps of C with {uin} ⊂ [0,∞) such that∑∞

n=1 uin < ∞ for all i ∈ I. Starting from arbitaray x0 ∈ C, define the sequence {xn} by the algorithm
(1.7), where {αn} ⊂ [δ, 1−δ] for some δ ∈ (0, 1/2). Then, {xn} is of monotone type(A) and monotone
type(B) with respect to F. Moreover, {xn} converges strongly to a common fixed point of the maps
{Ti : i ∈ I} if and only if lim infn→∞d(xn, F) = 0.

Proof. Take λx ⊕ (1 − λ)y = λx + (1 − λ)y in Corollary 2.3.

The lemma to follow establishes an approximate sequence, and as a consequence of
that, we find another strong convergence theorem for (1.6).

Lemma 2.5. Let (X, d) be a complete CAT(0) space, and let C be a nonempty closed convex subset of
X. Let {Ti : i ∈ I} beN uniformly L-Lipschitzian and generalized asymptotically quasi-nonexpansive
selfmaps of C with {uin}, {cin} ⊂ [0,∞) such that

∑∞
n=1 uin < ∞ and

∑∞
n=1 cin < ∞ for all i ∈ I.

Suppose that F is closed. Let {αn} ⊂ [δ, 1 − δ] for some δ ∈ (0, 1/2). From arbitaray x0 ∈ C, define
the sequence {xn} by (1.6). Then, limn→∞d(xn, Tlxn) = 0 for all i ∈ I.
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Proof. Note that {xn} is bounded as limn→∞d(xn, p) exists (proved in Theorem 2.1). So, there
exists R > 0 and x0 ∈ X such that xn ∈ BR(x0) = {x : d(x, x0) < R} for all n ≥ 1. Denote
d(xn−1, T

k(n)
i(n) xn) by σn.

We claim that limn→∞σn = 0.
For any p ∈ F, apply (1.3) to (1.6) and get

d2(xn, p
)
= d2

(
αnxn−1 ⊕ (1 − αn)T

k(n)
i(n) xn, p

)

≤ αnd
2(xn−1, p

)
+ (1 − αn)

[(
1 + uik(n)

)
d
(
xn, p

)
+ cik(n)

]2

− αn(1 − αn)d2
(
T
k(n)
i(n) xn, xn−1

)
(2.11)

further, using (2.4), we obtain

2δ3σ2
n ≤ αnd

2(xn−1, x∗) − d2(xn, x
∗)

+ (1 − αn)
[(
1 + uik(n)

)(
1 + vik(n)

)
d(xn−1, x∗) +

(
1 + uik(n)

)
γik(n) + cik(n)

]2
,

(2.12)

which implies that

2δ3σ2
n ≤ αnd

2(xn−1, p
)
+ (1 − αn)d2(xn−1, p

)

+
(
uik(n) + vik(n) + γik(n) + cik(n)

)
M − d2(xn, p

)
,

(2.13)

for some consant M > 0. This gives that

2δ3σ2
n ≤ d2(xn−1, p

) − d2(xn, p
)
+ σik(n)M, (2.14)

where σik(n) = uik(n) + vik(n) + γik(n) + cik(n).
For m ≥ 1, we have that

2δ3
m∑

n=1

σ2
n ≤ d2(x0, p

) − d2(xm, p
)
+

m∑

k(n)=1

σik(n)M

≤ d2(x0, p
)
+

m∑

k(n)=1

σik(n)M.

(2.15)

When m → ∞, we have that
∑∞

n=1 σ
2
n < ∞ as

∑∞
k(n)=1 σik(n) < ∞.

Hence,

lim
n→∞

σn = 0. (2.16)
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Further,

d(xn, xn−1) ≤ (1 − αn)d
(
T
k(n)
i(n) xn, xn−1

)

= (1 − αn)σn ≤ (1 − δ)σn

(2.17)

implies that limn→∞d(xn, xn−1) = 0.
For a fixed j ∈ I, we have d(xn+j , xn) ≤ d(xn+j , xn+j−1) + · · · + d(xn, xn−1), and hence

lim
n→∞

d
(
xn+j , xn

)
= 0 ∀j ∈ I. (2.18)

For n > N, n = (n −N)(modN). Also, n = (k(n) − 1)N + i(n). Hence, n −N = ((k(n) − 1) −
1)N + i(n) = (k(n −N)N + i(n −N).

That is, k(n −N) = k(n) − 1 and i(n −N) = i(n).
Therefore, we have

d(xn−1, Tnxn) ≤ d
(
xn−1, T

k(n)
i(n) xn

)
+ d

(
T
k(n)
i(n) xn, Txn

)

≤ σn + Ld
(
T
k(n)−1
i(n) xn, xn

)

≤ σn + L2d(xn, xn−N) + Ld
(
T
k(n−N)
i(n−N) xn−N, x(n−N)−1

)
+ Ld

(
x(n−N)−1, xn

)

= σn + L2d(xn, xn−N) + Lσn−N + Ld
(
x(n−N)−1, xn

)
,

(2.19)

which together with (2.16) and (2.18) yields that limn→∞d(xn−1, Txn) = 0.
Since

d(xn, Txn) ≤ d(xn, xn−1) + d(xn−1, Tnxn), (2.20)

we have

lim
n→∞

d(xn, Tnxn) = 0. (2.21)

Hence, for all l ∈ I,

d(xn, Tn+lxn) ≤ d(xn, xn+l) + d(xn+l, Tn+lxn+l) + d(Tn+lxn+l, Tn+lxn)

≤ (1 + L)d(xn, xn+l) + d(xn+l, Tn+lxn+l),
(2.22)

together with (2.18) and (2.21) implies that

lim
n→∞

d(xn, Tn+lxn) = 0 ∀l ∈ I. (2.23)

Thus, limn→∞d(xn, Tlxn) = 0 for all l ∈ I.
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Theorem 2.6. Let (X, d) be a complete CAT(0) space, and letC be a nonempty closed convex subset of
X. Let {Ti : i ∈ I} beN-uniformly L-Lipschitzian and generalized asymptotically quasi-nonexpansive
selfmaps of C with {uin}, {cin} ⊂ [0,∞) such that

∑∞
n=1 uin < ∞ and

∑∞
n=1 cin < ∞ for all i ∈ I.

Suppose that F is closed, and there exists one member T in {Ti : i ∈ I} which is either semicompact or
satisfies condition (A). Let {αn} ⊂ [δ, 1 − δ] for some δ ∈ (0, 1/2). From arbitaray x0 ∈ C, define the
sequence {xn} by algorithm (1.6). Then, {xn} converges strongly to a common fixed point of the maps
in {Ti : i ∈ I}.

Proof. Without loss of generality, we may assume that T1 is either semicompact or satisfies
condition (A). If T1 is semicompact, then there exists a subsequence {xnj} of {xn} such that
xnj → x∗ ∈ C as j → ∞. Now, Lemma 2.5 guarantees that limn→∞d(xnj , Tlxnj ) = 0 for all l ∈ I
and so d(x∗, Tlx∗) = 0 for all l ∈ I. This implies that x∗ ∈ F. Therefore, lim infn→∞d(xn, F) = 0.
If T1 satisfies condition (A), then we also have lim infn→∞d(xn, F) = 0. Now, Theorem 2.1
gaurantees that {xn} converges strongly to a point in F.

Finally, we state two corollaries to the above theorem.

Corollary 2.7. Let (X, d) be a complete CAT(0) space and let C be a nonempty closed convex subset
of X. Let {Ti : i ∈ I} be N uniformly L-Lipschizian and asymptotically quasi-nonexpansive selfmaps
of C with {uin} ⊂ [0,∞) such that

∑∞
n=1 uin < ∞ for all i ∈ I. Suppose that there exists one member

T in {Ti : i ∈ I} which is either semicompact or satisfies condition (A). From arbitaray x0 ∈ C, define
the sequence {xn} by algorithm (1.6), where {αn} ⊂ [δ, 1 − δ] for some δ ∈ (0, 1/2). Then, {xn}
converges strongly to a common fixed point of the maps in {Ti : i ∈ I}.

Corollary 2.8. Let (X, d) be a complete CAT(0) space, and let C be a nonempty closed convex subset
of X. Let {Ti : i ∈ I} be N asymptotically nonexpansive selfmaps of C with {uin} ⊂ [0,∞) such that∑∞

n=1 uin < ∞ for all i ∈ I. Suppose that there exists one member T in {Ti : i ∈ I} which is either
semicompact or satisfies condition (A). From arbitrary x0 ∈ C, define the sequence {xn} by algorithm
(1.6), where {αn} ⊂ [δ, 1 − δ] for some δ ∈ (0, 1). Then, {xn} converges strongly to a common fixed
point of the maps in {Ti : i ∈ I}.

Remark 2.9. The corresponding approximation results for a finite family of asymptotically
quasi-nonexpansive maps on: (i) uniformly convex Banach spaces [5, 14, 15], (ii) convex
metric spaces [13], (iii) CAT(0) spaces [12] are immediate consequences of our results.

Remark 2.10. Various algorithms and their strong convergence play an important role in
finding a common element of the set of fixed (common fixed) point for different classes of
mapping(s) and the set of solutions of an equilibrium problem in the framework of Hilbert
spaces and Banach spaces; for details we refer to [18–20].
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