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The main purpose of this paper is to introduce an explicit iterative algorithm to study the existence
problem and the approximation problem of solution to the quadratic minimization problem.
Under suitable conditions, some strong convergence theorems for a family of nonexpansive
mappings are proved. The results presented in the paper improve and extend the corresponding
results announced by some authors.

1. Introduction

Throughout this paper, we assume that H is a real Hilbert space with inner product (-,-) and
norm || - ||, C is a nonempty closed convex subset of H, and F(T) = {x € H : Tx = x} is the
set of fixed points of mapping T.

A mapping S : C — C is called nonexpansive if

I5x =Syl < [lx -y

, Yx,yeC. (1.1)

Let A: H — H be a single-valued nonlenear mapping and M : H — 2H be a
multivalued mapping. The so-called quasivariational inclusion problem (see [1-3]) is to find
u € H such that

0€Au)+M(u). (1.2)

The set of solutions to quasivariational inclusion problem (1.2) is denoted by VI(H, A, M).



2 Fixed Point Theory and Applications

Special Cases

M IfM=0¢p: H — 2H, wheredp : H — RU{+oo} is a proper convex lower semi-continuous
function and 0¢ is the subdifferential of ¢, then the quasivariational inclusion problem (1.2)
is equivalent to finding u € H such that

(A@),y-u)+¢(y) - p(w) >0, VyeH, (13)

which is called the mixed quasivariational inequality (see [4]).
(II) If M = 06¢, where C is a nonempty closed convex subset of H and 6¢ : H —
[0, +o0) is the indicator function of C, that is,

0, xeC,
Oc(x) = { (1.4)

+o0, x¢C,

then the quasivariational inclusion problem (1.2) is equivalent to finding u € C such that

(A(u),v-u) >0, VYveC (1.5)

This problem is called the Hartman-Stampacchia variational inequality (see [5]). The set of
solutions to variational inequality (1.5) is denoted by VI(A, C).

Let B : C — H be a nonlinear mapping and F : C x C — R be a bifunction. The
so-called generalized equilibrium problem is to find a point u € C such that

F(u,y) +(B(u),y-u)>0, VYyeC (1.6)

The set of solutions to (1.6) is denoted by GEP (see [5, 6]). If B = 0, then (1.6) reduces to the
following equilibrium problem: to find u € C such that

F(u,y) >0, VyeC (1.7)

The set of solutions to (1.7) is denoted by EP.

Iterative methods for nonexpansive mappings and equilibrium problems have been
applied to solve convex minimization problems (see [7-9]). A typical problem is to minimize
a quadratic function over the set of the fixed points of a nonexpansive mapping on a real
Hilbert space H:

15
- 1.
gggzllxll, (1.8)

where ¥ is the fixed point set of a nonexpansive mapping T on H.
In 2010, Zhang et al. (see [10]) proposed the following iteration method for variational
inclusion problem (1.5) and equilibrium problem (1.6) in a Hilbert space H:

xt = SPe((1 = ) Jia (I = AA)T, (I - uB))xi, € (0,1). (1.9)
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Under suitable conditions, they proved the sequence {x,} generated by (1.9) converges
strongly to the fixed point x*, which solves the quadratic minimization problem (1.8).

Motivated and inspired by the researches going on in this direction, especially inspired
by Zhang et al. [10], the purpose of this paper is to introduce an explicit iterative algorithm
to studying the existence problem and the approximation problem of the solution to the
quadratic minimization problem (1.8) and prove some strong convergence theorems for a
family of nonexpansive mappings in the setting of Hilbert spaces.

2. Preliminaries

Let H be a real Hilbert space, and C be a nonempty closed convex subset of H. For any x € H,
there exists a unique nearest point in C, denoted by Pc(x), such that

llx = Pex|| < ||lx -y

, VyecC. (2.1)

Such a mapping Pc from H onto C is called the metric projection. It is well-known that the
metric projection Pc : H — C is nonexpansive.

In the sequel, we use x, — x and x, — x to denote the weak convergence and the
strong convergence of the sequence {x,}, respectively.

Definition 2.1. A mapping A : H — H is called a-inverse strongly monotone if there exists
an a > 0 such that

(Ax - Ay, x - y) > a|| Ax - Ay|)%,

Vx,y € H. (2.2)

A multivalued mapping M : H — 2H is called monotone if Vx,y € H,u € Mx,v € My,
(u-v,x-y)>0. (2.3)

A multivalued mapping M : H — 2 is called maximal monotone if it is monotone and for
any x,u € H x H, when

(u-v,x-y)>0 forevery (y,v) € Graph(M), (2.4)

then u € Mx.

Proposition 2.2 (see [11]). Let A : H — H be an a-inverse strongly monotone mapping. Then,
the following statements hold:

(i) Aisan 1/a-Lipschitz continuous and monotone mapping;

(ii) if A is any constant in (0,2a], then the mapping I — LA is nonexpansive, where I is the
identity mapping on H.
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Lemma 2.3 (see [12]). Let X be a strictly convex Banach space, C be a closed convex subset of X,

and {T, : C — C} be a sequence of nonexpansive mappings. Suppose (\;-q F(T) #0. Let {A,,} be a
sequence of positive numbers with %, A, = 1. Then the mapping S : C — C defined by

Sx =27 0T,x, xeC (2.5)

is well defined. And it is nonexpansive and
F(S) = (\F(Ty). (2.6)
n=1

Definition 2.4. Let H be a Hilbert space and M : H — 29 be a multivalued maximal
monotone mapping. Then, the single-valued mapping Jum, : H — H defined by

Jma(u) = ([+AM)" (1), ueH (2.7)

is called the resolvent operator associated with M, where \ is any positive number and I is the
identity mapping.

Proposition 2.5 (see [11]). (i) The resolvent operator Jary associated with M is single-valued and
nonexpansive for all A > 0, that is,

ITma(x) = Ima () || < |lx -y, VYx,yeH, VA>o0. (2.8)

(ii) The resolvent operator ) is 1-inverse strongly monotone, that is,
| Tas (x) - ]M,A(]/)H2 <A{x-y, Ima(x) = Ima(y)), Vx,ye€H. (2.9)

Definition 2.6. A single-valued mapping A : H — H is said to be hemicontinuous if for any
x,Y,z € H, function t — (A(x + ty), z) is continuous at 0.

It is well-known that every continuous mapping must be hemicontinuous.

Lemma 2.7 (see [13]). Let {x,} and {y,} be bounded sequences in a Banach space X. Let {f,} be a
sequence in [0, 1] with

0 < lim inf B, <limsup p, < 1. (2.10)
n— oo

Suppose that

Xn+l = (1 - ﬁn)yn + Pnxn, Yn2>0,

2.11
limsup ({|yn1 = Ya| = %01 —xall) 0. @11)
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Then,

Jim [|y, = x| = 0. (212)

Lemma 2.8 (see [14]). Let X be a real Banach space, X* be the dual space of X, T : X — 2X bea
maximal monotone mapping, and P : X — X* be a hemicontinuous bound monotone mapping with
D(P) = X. Then, the mapping S=T + P : X — 2% is a maximal monotone mapping.

Lemma 2.9 (see [15]). Let X be a uniformly convex Banach space, let C be a nonempty closed convex
subset of X, and T : C — C be a nonexpansive mapping with a fixed point. Then, I — T is demiclosed
in the sense that if {x,} is a sequence in C satisfying

x,—=x, (I-T),—0, (2.13)
then
(I-T)x =0. (2.14)

Throughout this paper, we assume that the bifunction F : C x C — R satisfies the
following conditions:

(Hy) F(x,x) =0forall x € C;

(Hp) F is monotone, that is,

F(x,y) +F(y,x) <0, VYx,yeC, (2.15)
(H3) foreachx,y,z€C,

ltigd—’(tz +(1-t)x,y) <F(x,y), (2.16)

(Hy) for each x € C, y — F(x,y) is convex and lower semi-continuous.

Lemma 2.10 (see [16]). Let H be a real Hilbert space, C be a nonempty closed convex subset of H,
and F : C x C — R be a bifunction satisfying the conditions (Hy)—(Hy). Let u > 0 and x € H. Then,
there exists a point z € C such that

1
F(z,y)+p<y—z,z—x>20, Yy e C. (2.17)
Moreover, if T, : H — C is a mapping defined by
T#(x):{zeC:F(z,y)+/%<y—z,z—x>20, VyGC}, x € H, (2.18)

then the following results hold:
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(i) T, is single-valued and firmly nonexpansive, that is, for any x,y € H,
I1Tx = Tuy||” < (Tux - Ty, x — ), (2.19)
(i) EP is closed and convex, and EP = F(T),).
Lemma 2.11. (i) (see [11]) u € H is a solution of variational inclusion (1.2) if and only if

u=Jpmr(u—AAu), VA>0, (2.20)

that is,

VI(H, A, M) = F(Jaa(u — AMAu)), VYA > 0. (2.21)

(ii) (see [10]) u € C is a solution of generalized equilibrium problem (1.6) if and only if

u=T,(u-puBu), Yu>0, (2.22)

that is,

GEP = F(T,(u - uBu)), VYu>O0. (2.23)

(iii) (see [10]) Let A : H — H be an a-inverse strongly monotone mappingand B : C — H
be a p-inverse strongly monotone mapping. If A € (0,2a] and p € (0,2p], then VI(H, A, M) is a
closed convex subset in H and GEP is a closed convex subset in C.

Lemma 2.12 (see [17]). Assume that {a,} is a sequence of nonnegative real numbers such that

An+l < 1- YnQn + 611/ Vn > 1, (224)

where {y,} is a sequence in (0,1) and {6,} is a sequence such that:
(i) X5t Yn = o
(ii) limsup,,_,  (64/Yn) <0o0r 372 |6n] < co.

Then, lim,, _, wa, = 0.

3. Main Results

Theorem 3.1. Let H be a real Hilbert space, C be a nonempty closed convex subsetof H, A: H — H
be an a-inverse strongly monotone mapping and B : C — H be a p-inverse strongly monotone
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mapping. Let M : H — 29 be a maximal monotone mapping, {T, : C — C} be a sequence of
nonexpansive mappings with (54 F(T,) #0, S : C — C be the nonexpansive mapping defined by
(2.5),and F : C x C — R be a bifunction satisfying conditions (H;)—(Hy). Let {x,} be the sequence
defined by

Xn+1 = AnXn + (1 - an)(SPC((l —tn)Ima (I - )‘A)T,u (I - I/‘B))xn)/ (3.1)

where the mapping T, : H — C is defined by (2.18), and A, p are two constants with A € (0,2a], p €
(0,2p], and

tn€(0,1), tn—0(m— ), Dit,=oo, 0<a<a,<b<l (3.2)
n=1
If
Q:= F(S)nVI(H, A, M) NGEP #0, (3.3)

where VI (H, A, M) and GEP is the set of solutions of variational inclusion (1.2) and generalized
equilibrium problem (1.6), respectively, then the sequence {x, } defined by (3.1) converges strongly to
x* € Q, which is the unique solution of the following quadratic minimization problem:

*12 _ . 2
[loc"][* = min|c]|". (3.4)

Proof. We divide the proof of Theorem 3.1 into four steps.

Step 1 (The sequence {x,} is bounded). Set
uy =T, (I - puB)xy, Yn = Jma(I — AA)uy,, zn = SPc((1 = ty)Yn)- (3.5)
Taking z € Q, then it follows from Lemma 2.11 that
z=T,(z-puBz) = Jma(z - AAz) = SPcz. (3.6)

Since both T, and ], are nonexpansive, A and B are a-inverse strongly monotone and f-
inverse strongly monotone, respectively, from Proposition 2.2, we have
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llttn = z||* = || T (I = uB)xy — Tyu(z — pBz) ||2
<||(I - puB)x, — (z - ‘uBz)”z (3.7)
< llatn = 2l + p(pt = 2P) 1B = B2)|”,
lya = 2I1” = 1Taa T =2 A)un = Jasa(z ~ 1A2)|?

<|I(I = AA)uy - (z - AA2)|

(3.8)
<l = 2|7 + A(A = 20) | Aut,, - A2)|?
<t = 2I12 + AL = 20) [ At — A2)IP + (i = 26) 1 Bxs — B)|P-
This implies that
”]/n - Z” < lun =zl < {lxn — 2] 3.9)
It follows from (3.1) and (3.9) that
It — z|| = ”“nxn +(1- an)SPC((l - tn)yn) - Z”
= ”an(xn - Z) +(1- an)(SPC((l - tn)yn) - SPCZ)”
Sapllxy —z|| + (1 - an)”SPC((l - tn)yn) - SPCZ”
< “n“xn - Z“ + (1 - “n)“(l - tn)yn - Z”
< “n“xn - Z“ + (1 - “n)((l - tn)"yn - Z” + tn”Z”)
(3.10)

< atyl|xn — zl| + (1= @) (1= )| — 2l + talz)
<A =ta(1 = a)|lxn = z|| + t, (1 = )| 12|

< max({||x, - zl|, ||z]|}

< max{||x,-1 - z||, ||z]|}

<---<max{fla =z |z]]} = M,

where M = max{||x1 — z||, ||z||}. This shows that {x,} is bounded. Hence, it follows from (3.9)
that the sequence {u,} and {y,} are also bounded.
It follows from (3.5), (3.6), and (3.9) that

1zn = zl| = [|SPc(1 = tn)yn — SPez|| < [|(1 - tw)yn - 2||

(3.11)
<A =ta)||yn - 2| + tallzll £ A = tn) 10 = 2| + ]| 2]| < M.

This shows that {z,} is bounded.
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Step 2. Now, we prove that

i [, sl = lim [l ] = lim [l ~ g2 ) =0,

(3.12)
lim ||x, — Sx,|| = 0.
n— oo

Since SPc is nonexpansive, from (3.5) and (3.9), we have that

Y1 = Yall < ttmir = el < [l2cne1 = 24, (3.13)
IZns1 = zall = [|SP((1 = tus1)ynsr) = SP((1 ~ ta)y) |
<@ = traa)ymar = (1= t2) |
= 111 = 1) (et = ¥) + (4 = tuar = (1= £)) |
< (1=t [[ Y1 = Yl + bsr = tal[[ | (3.14)
< Nyt = yull + Itner = tal ||y
< Nt = snll + lbnet = bl [[ |

< lnt = xull + [twsr = tal[[ Y |-
Letn — ooin (3.14), in view of condition t, — 0(n — <o), we have
Hm ([[zn1 = 2all = 101 = 2ul]) = 0. (3.15)
By virtue of Lemma 2.7, we have
im [lac, = z[| = 0. (3.16)
This implies that

lim [[xp1 = Xl = lim (1 = ap) ||z, — xn]| = 0. (3.17)
n— oo n— oo
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We derive from (3.17) that

lim <||xn - z||2 — [|xps1 — z||2> = lim <||xn - anr1||2 +2{Xy — Xns1, Xns1 — z))
n—oo n—oo (3 18)
< 1im (|, = xpe | + 21Jn = Xnea | - lPnen = 211) = 0.
n—oo

From (3.1) and (3.8), we have
1 = 2l < (aulloen =zl + (1= @) | (1 = ta)ym — 2[|)°
< anllxn =zl + (1= an) | (1 = ta) (yn — 2) - tnzllz
= anlln = 217 + (1= ) (1= 8[|y = 2II° = 2t (1 = 1) (2, v — 2) + 1217
< allx = 2P + (1= o) ([lyn = 2* + M1 )
< aplloen — 2|7 + (1 - an)
x (1ln = 2> + Ak = 2)]| Aty = Az|P + et = 2B) | Bxy = Bz + £, M)

= llxn — 2l + (1 - ay) ()L()L —2a)|| Ay, — Az|* + p(u - 2B) | Bx, — Bz||> + tnM1>,

(3.19)
where
M = Slip{ 1212 + 2(A[ st = | + el 0 = ynll)} < oo, (3.20)
that is,
(1= &) (A(2a = V)| Ay = Az|* + (26 = ) | Bx, - Bz
(3.21)

< loew = zl* = |xns1 = 2l* + (1 = @)t M.

Let n — oo, noting the assumptions that A € (0,2a), p € (0,2p), from (3.2) and (3.18), we
have

lim ||Au, — Az| = lim ||Bx,, — Bz|| = 0. (3.22)
n— oo n— oo
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By virtue of Lemma 2.10(i) and (3.1), we have
ltn = 2II* = || T = pBx) = Ty (2 = puB2) ||”
< ((a— pBxy) = (2 - pB2) s - 2)

1
= E<|| (X — uBx,) = (z = uB2) ||” + |lun - 2?

—|[(xn = 2) = u(Bx,, — Bz) — (u, — z) ||2> (3.23)
1
< > <”xn - 2”2 + ||un - 2”2 - ”(xn —Uy) — ,U(an - Bz) ”2>
e ey P
2
+ 2p(xn — tn, Bx, — Bz) — y?||Bx,, — Bz||2>.
Simplifying it, we have

l[14n = 2II* < 1% = 2I1* = [0 = 1al* + 24( % = tn, Bxy — Bz) = 4i*||Bx,, - Bz|)*
< [l = 21 = 120 = wall® + 24120 = 1] - || Bxn - B2]| (3:24)

< [lxn = 2[1% = [|%n = wal” + M| Bx, - Bz|.
Similarly, in view of Proposition 2.5(ii) and (3.1), we have

Ny = 2||° = 172 (ttn = AAsey) = Taga(z - LAZ)|?

< ((tn — Muy) — (2~ LAZ), Y, — 2)

1
= 5 (s = 2Au) = (2= 2A2) P + ||y - 2|

— || = AAw,) = (2 = AAZ) = (v - 2) ||2> 25)
1
< 5 (then = =1 + llyn = 2 = (4 = ) = 2(Auy = A2)|?)
= 2l ==+ = 21 = =l
2 " n n n

+ 20 (1t — Y, Atty — Az) — \?|| Aut,, — Az||2>.
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Simplifying it, from (3.24), we have

”yn - lez < g - Z“2 - ”un - ]/n||2 +2Mup — Yn, Aty — Az) — )‘ZHAun - AZ”2
< Nlttn = 2l = ||ttn = v ||* + 2|1t = Y| - | Ast — Az 526
< [l = 2|2 = (120 = ]l + M| B = Bz|| = ||t — )

+ M;||Au, — Az||.
From (3.19) and (3.26), we have

|%n41 — ZHZ < apllx, - 2”2 +(1-ay) <”}/n - Z”2 + tnM1>
< anllxn = 2|* + (1 - an)
2 2 2
o (1% = 217 = I = 0] [l = | + M (B — Bz + | Ay - Az +1,))
= [lxn = Z||2 +(1-ay)

x (M (IBx, - Bz| + || Aty = Az]| + £a) = 10 = 0all* = [ = yu*)..

(3.27)
Letn — oond in view of (3.18) and (3.22), we have
. 2
nlgr;o<||xn =l + [t = yul|*) = 0. (3.28)
This shows that
1im (12, — ] = lim [l — g = 0,
(3.29)
lim ||x, — ya|| = 0.
Then, we have
lxn1 = Sxusall = [[Xn+1 — Sxn + Sxn = Sxpa ||
< ”xn+1 - an” + ”an - an+1||
= ||SPc((1 - tn)yn) — SPexul| + [|Sxn — Sxpa || (3.30)

<(1- tn)”}/n - xn” + tullxull + [l = X4l

— 0(n — o0).



Fixed Point Theory and Applications

13

Step 3 (sequence {x,} converges strongly to x* € Q). Because {x,} is bounded, without loss
of generality, we can assume that x, — x* € H. In view of (3.12), it yields that u,, — x* and

Yn — x*. From Lemma 2.9 and (3.30), we know that x* € F(S).
Next, we prove that x* € GEP N VI(H, A, M).
Since u, = Ty, (x, — uBx,), we have

1
F(un,y) + ;(y — U, U — (X, —Bx,)) 20, VyeC.
It follows from condition (H;) that
1
;(y — Up, Up — (Xp — uBx,)) > F(y,u,), VyeC.

Therefore,

<y —uy,, Un ; Xn o, an> >F(y,u,), VYyeC.

Foranyt e (0,1) and y € C, then y; =ty + (1 - t)x* € C. From (3.33), we have

Un — Xn

(Yt = tn, Byr) > (yi — un, Bys) — <]/t — Uy, +an> + F(yt, tn)
= (Yt — Um, Bys — Buy) + (yi — un, Bu, — Bxy)

- <yt — Uy, u";x"> + F(ys, tn).

Since B is p-inverse strongly monotone, from Proposition 2.2(i) and (3.12), we have

1
|| Butn, = Bxu|| < B|
(Yt = tn, Bys - Buy) > || By: - Bua||* > 0.

Uy —xu|| — 0 (n— o0),

Letn — ooin (3.34), in view of condition (H4) and u,, — x*, we have
(y: —x*,By) > F(yi, x¥).
It follows from conditions (H;), (H4) and (3.36) that

0=F(y,y1) <tF(yi,y) + (1 - t)F(ys, x¥)
<tF(yi,y) + (1 - )(yi - x*, By:)
=tF(y,y) + (1 - )t(y - x*, By),

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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that is,
0<F(y,y)+ 1A -t){y—x*,By). (3.38)
Let t to 0 in (3.38), we have
F(x*,y) +(y-x*,Bx*) >0, VyeC. (3.39)

This shows that x* € GEP.

Step 4 (now, we prove that x* € VI(H, A, M)). Since A is a-inverse strongly monotone, from
Proposition 2.2 (i), we know that A is an 1/a-Lipschitz continuous and monotone mapping
and D(A) = H, where D(A) is the domain of A. It follows from Lemma 2.8 that M + A is
maximal monotone. Let (v, f) € Graph(M + A), thatis, f — Av € M(v). Since Y, = a1 (tn —
MAuy), we have u, — MAu, € (I + AM)(y»), thatis, 1/A(u, — yu — AAu,) € M(y»). By virtue
of the maximal monotonicity of M, we have

<v —Yn, f — Av— %(u,1 - Y — )LAun)> > 0. (3.40)

Therefore we have

(V=Yu f) 2 <v—yn,Av+ %(un—yn—/\Aun)>

(3.41)
= <v — Yn, AV — Ay, + Ay, — Auy, + %(un —yn)>.
Since A is monotone, this implies that
1
(©=Yn f) 20+ (0 =y, Ayn = Attn) + (0 = Y, 7 (4 = Yn) ).
(3.42)
Since
=yl =0, A= Agall =0, yomx, (1—w), (43
from (3.42), we have
lim (0 -y, f) = (v -, f) 2 0. (3.44)

Since A + M is maximal monotone, 6 € (M + A)(x*), thatis, x* € VI(H, M, A).
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Summing up the above arguments, we have proved that
x* € Q:=F(S)nVI(H, M, A) n GEP. (3.45)
On the other hand, for any z € €2, we have
20 = 21 = [|SPc((1 = ta)yn) - SPcz|*

<11 = t)yn = 2]1* = [lyn - 2 = tuyal”

= Ny = 2l" =260y yu = 2) + 2|yl

. . (3.46)
= ”yn - Z” =2ty (Yn =2, Yn—2) = 2ta(Z,Yn — 2) + ti”yn”
= (1=2t)lyn = 2||" +2ta(z, 2 = yu) + £ |y |”
< (1-2t)||lxn — z||2 + 2t (2,2 — Yn) + ti”yn Z
and so we have
%ns1 = 2] = llan(xn = 2) + (1 = @) (20 — 2)|°
<l = 2P + (1= ) (1= 28) 100 = 21 +280(2, 2 = ya) ) + £
= [1 = 2t (1 = @)l = 2I* +2(1 = an)tu(z, 2 = yu) + ||y
<1 =2t,(1 =)l — 2] + 2(1 = @) tu(z, 2 = yu) + ]| ya|*-
Put z = x* in (3.47), we have
2w = |17 < (1 =) 2w = x*[1* + 64, (3.48)

where y, = 2t,(1 - b) and 6, = 2(1 — a,)t,(x*, x* — yu) + tflllynHz. Since y, — x*, it is easy to
see that 37% y» = o0 and lim,,_, (6, /y») = 0. By Lemma 2.12, we conclude that x, — x* as
n — oo, where x* is the unique solution of the following quadratic minimization problem:

w2 _ - 2
[loc"]* = min]x[|". (3.49)

This completes the proof of Theorem 3.1. O

In Theorem 3.1, if T = T, (Vun > 1), then the following corollary can be obtained
immediately.

Corollary 3.2. Let H be a real Hilbert space, C be a nonempty closed convex subset of H, A: H —
H be an a-inverse strongly monotone mapping and B : C — H be a p-inverse strongly monotone
mapping. Let M : H — 2H be a maximal monotone mapping, {T : C — C} be a nonexpansive
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mappings with F(T) #@. Let F : C x C — R be a bifunction satisfying conditions (Hy)—-(Hy). Let
{xn} be the sequence defined by

Xna1 = @nXp + (1= ) (TP ((1 = ) Jma (I = LA)T, (I — uB)) ) xy, (3.50)

where the mapping T, : H — C is defined by (2.18), and A, p are two constants with A € (0,2a], p €
(0,2p], and

t, €(0,1), t,— 0(n— o), Ztn:oo, O<a<a,<b<l. (3.51)
n=1
If
Q= F(T)NVI(H, A, M) N GEP #4, (3.52)

where VI (H, A, M) and GEP are the sets of solutions of variational inclusion (1.2) and generalized
equilibrium problem (1.6), then the sequence {x,} defined by (3.50) converges strongly to x* € Q,
which is the unique solution of the following quadratic minimization problem:

*12 _ . 2
[l |l —gcrelgllllxll . (3.53)

In Theorem 3.1, if M = 06¢c : H — 2H, where 6¢c : H — [0,0] is the indicator
function of C, then the variational inclusion problem (1.2) is equivalent to variational
inequality (1.5), that is, to find u € C such that (Au,v —u) > 0, for all v € C. Since
M = 06¢, Jmr = Pc. Consequently, we have the following corollary.

Corollary 3.3. Let H be a real Hilbert space, C be a nonempty closed convex subset of H, A: H —
H be an a-inverse strongly monotone mapping and B : C — H be a p-inverse strongly monotone
mapping. Let M = 86¢c : H — 2" and (T : C — C} be a nonexpansive mappings with F(T) # (.
Let F : C x C — R be a bifunction satisfying conditions (H;)—(Hy). Let {x,} be the sequence defined
by

X1 = @y + (1= ) (T((1 = £,) Pe(I = AA)T, (I - uB))) xn, (3.54)

where the mapping T, : H — C is defined by (2.18), and A, u are two constants with A € (0,2a], p €
(0,2p], and

tn€(0,1), tp—0(m—om), dt,=o, 0<a<a,<b<l (3.55)

n=1

If

Q, == F(T) N VI(A,C) NGEP #0, (3.56)
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where VI (A,C) and GEP are the sets of solutions of variational inclusion (1.5) and generalized
equilibrium problem (1.6), then the sequence {x,} defined by (3.54) converges strongly to x* € C,
which is the unique solution of the following quadratic minimization problem:

2 _ - 2
[l || —g;;:r;nxn : (3.57)
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