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ABSTRACT. Some integral criteria for the asymptotic behdvior of oscillatory

solutions of higher order retarded differential equations are given.
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1. INTRODUCTION.

Recently, Tong [I proved the following interesting result.

Theorem. Let f(t,u) be continuous on R x R. If there are two non-
+

negative continuous functions v(t), p(t) for t 0, and a continuous

function g(u) for u 0 such that

(a) /.v(t)p(t)dt <

(b) g(u) is positive and nondecreasing for u > 0,

(c) If(t,u) v(t)p(t)g(t-’ lul) for t 1, u e R,

then the equation

u"+f(t,u) 0

has solutions which are asymptotic to a+bt, where a, b are constant and

b 0.

In this note we generalize Tong’s result to a more general case which

improves also the results of Chert and Yeh [2] and Kusano and Singh [5].
Using this result, we establish an asymptotic behavior of oscillatory solutions

of retarded differential equations.

2. MAIN RESULTS.

Consider the following retarded differential equations

(2.1) LnY(t)+f(t,y(g(t)) h(t), t 0, n 2

where L is an operator defined byn
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ro ()’= "%- ()’ ’"’"Loy(t) "= LiY dt i-’

(t) :: .
n

cn-iHere ri(t e [R ,R] with ri(t > 0 for i 0,1,’’-,n-1.
+

Sufficient smoothness to guarantee the existence of solutions of (2.1) on

an infinite subinterval of R will be assumed without mention. The following
+

conditions are assumed to hold in thSs note.

(i) f C[R xR,R] and there exist two positive functions p(t),
+

/

that

Iz(t,u) -< ,(t)( lu I),
(it) g, h CIR.,R], g(t) < t, lira g(t)= ,

..(t,u)
(iil) lim inf > 0, lim sup (t,L < oo, i 1,2," ,n-2,

whvre w(,u) s defined by

s,

t(t,u) := [ ,(, r(,)’’" t(s)as...asa,.
Ju

Theorem 1. Let

(2.2) Wn_, (t)p(t)dt <

(2.5) Ih(t) ldt <

hold. If y(t) is a solution of (2.1), then y(g(t)) 0(Wn_,(t,T)) for

some T > 0.

Proof. Let y(t) be a solution of (2.1) on an interval [To,oO), T >0.

It follows from (il) and (ill) that there exist a T > To and a positive

constant m such that

and

g(t) > To for t > T

inf= m
tT

By (tlt), there is a positive constant c such that

wi(t,T < c. (t,T), i 1,2,’’" n-2
n-1

Now a simple argument shows that

n-1lY(g(t))l .< ILoy(g(t))l .< E ILiy(T Iwi(g(t),Tm
i=O

r(t) s s

/Ts’ /T
n-2

)/Tr,(s,) ra(s2)--" r (Sn_ ILnY(S) idsds ...as,n-1 n-1
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Hence

n-1 t
.< cw (t,T) Z iY(T):+Wn_ (t T)/T IgnY(S)n-

i=0

wtere

.ly(g(t)) n-1 mfTt mfTtw- (t T) "< cm Z ILiy(T)I* Ih(s) [as. p(s)H(y(g(s)))ds
n- i=O

fvt (.(s)).< M+ Wn_ (s,T)p(s)H n’t (s’T)?s’

M :: cm Z [LiY(T)[+m; lh(s)Ids.
i=0 JT

By Biharl’s inequality [] or LaSalle’s inequality [5] we have

wlY(l{tl)! .< G-’iG(M)+/Tt s,T s
n-’

t T; Wn- )p( )ds

fx dt
where O(x) := ]T and O (x) is the inverse function of G(x). is and

[y(g(t))]
is bounded. is completes the prof.(2.2) imply (t T)

Remark . For n 2, r0(t) r(t) and g(t) t, eorem improves

Tong’s result [ ].

Remark 2. For H(u) [u[r, where r e (0,1], eorem improves the

results of Chert and Yeh [2, eorem and Singh and Kusano [5, Theorem which

require the condition

f=ri (t)dt =, for i 1,2--’,n-1.

Using eorem 1, we can prove the foiiolng theorem which extends eorem

of vtos [6].
eorem2. Let (2.2) and (2.5) hold. Assume that for some T 0

(2 ) ,(s,) (,)-.. r (s,_) ,(s (s T))asa, -.-a,
n--I -- n-

Js
n-2 n-I

<

for any constant c > O, and

>/s? /s /s(2.5) ,(s, (s)" rn_ (Sn_ l(s) ]asasn_, ..’ds <

n-2 n-I

hold. Then every oscillatory solution y(t) of (2.1) satisfies

lim Liy(t 0 for t 1,2,’-’,n-1.
t

e proof of eorem 2 Is essentially the same as that of eorem In [6],
so we omit the details.

Exampie 1. e differential equation

(t’(t)).(t)= t
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has an oscillatory solution y(t) +sin(Int)
In this example, condition (2.2) and (2.4) are not satisfied, while

and (2.5) are valid.

Example 2. Consider the differential equation

(e-ty’) "+e-3t-y(t-) e- [sin t+7cos t-e-atsin t ],
for t > 0. All conditions of Theorem 2 are satisfied. It has y(t) e

-t

as an oscullatory solution which approaches zero as t -->
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but lim y(t) does not exist.

(2.3)

sin t
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