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ABSTRACT. Some integral criteria for the asymplotiic behdvior of oscillatory

solutions of higher order retarded differential equations are given.
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1. INTRODUCTION.,
Recently, Tong [1] proved ihe following interesting result.

Theorem. Let f(t,u) be continuous on R+xR. If there are two non-

negative continuous functions v(t), p(t) for t > O, and a coniinuous

function g(u) for u 2 O such that

(a) /wv(t)p(t)dt < w.

(b) g(u) is positive and nondecreasing for u > O,

(c) lf(t,u)l < v(t)p(t)g(t-1|u|) for t 21, u €R,

then the equation
u’+f(tyu) = O

has solutions which are asympiotic to a+bt, where a, b are consiant and
b £ O.

In this note we generalize Tong's result to a more general case which
improves also the results of Chen and Yeh [2] and Kusano and Singh [3].
Using this result, we establish an asymptolic behavior of oscillatory solutions
of retarded differential equations.
2. MAIN RESULTS.

Consider the following retarded differential equations
(2.1) Loy(t)+£(t,y(e(t))) = n(t), ¢t >0, n

A\

2

where Ln is an operator defined by
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i 1 d
Loy(1) := ;f%z%, Liy(t) i= ;~(I$ EILi_1y(t), i=1,2,+-,n

i
rn(t) = 1.

Here r (1) ec"'i[a.,a] with r (1) >0 for i = 0,1, ,n-1.

Sufficient smoothness {0 guarantee the exisience of solutions of (2.1) on

an infinite subinlerval of R will be assumed withoul mention. The following

conditions are assumed 10 hold in this note.

(1) £ e c[R xR,R} and there exist iwo positive functions p(t), H(t)
€ C[R+,R'] with H(t) nondecreasing and kH(t) < H(kt) for any k > O such

that
[£(t,u) | < p(t)H([u]),

(ii) g, h € C[R+’R], g(t) €1, 1lim g(t) = ooy

1200
1 ‘wi(t’u)
= 1,2,°°" -2
(iii) lir: inf RO lir:*zup m <ow i 22500 ,n=2,

where wi(t,u) is defined by

s
t St i-1
wi(t,u) = / r,(s,)/. rz(sz)'-'jA ri(si)dsi'°'dszds,.
u u u
Theorem 1. Let

(2.2) /mwn_1(t)p(t)dt < w

(2.3) /wlh(t) lat < o

hold. If y(1) 1is a solution of (2.1), then y(g(1)) = O(wn_i(t,T)) for

some T > O.
Proof. Leit y(1) be a solution of (2.1) on an interval [To,w), T, 2 O.

It follows from (ii) and (iii) that there exist a T > T, and a positlive
constant m such that

g(t) 2Ty for t 2T
and

inf ro1t = &.

12T
By (iii), there is a positive constant c such that

wi(t,T) < cwn_‘(t,T), i=1,2,-+*,n=2,

Now a simple argument shows that

. n-1
Ll oy (g)] < 2 Iy (m) v (6(1),)

m i=0

+/rg(t)r1(s1)/TS1r2(Sz)'../Tsn-zrnﬂ(sn—')/'rsn—‘ any(s) ldesn-t. "dsy
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n-1 i
< cwn_1(t,T) z hiy(T)’+wn_1(t,T)/- |Lny(s)|ds.
T

i=0
Hence
n-1 i t
o iy < cmifolLiY(T)|+m/; lh(s)lds+m]; p(s)H(y(g(s)))ds
t s
< M+m[T Wn_1(s,T)P(S)H<wJ§'§%§Z'H)°s’
where

n—1 oo
M:=cm 3 lLiy(T) |+m/ [n(s) |lds.
T

By Bihari's inequality [h] or LaSalle's inequalily [5] ve have
.l_z(g%t”[ i t \
W \T < (G(M)i/; wn-,(s’T/P(S)ds),

X " -
where G(x) = /. ﬁ%%j and G ,(x) is the inverse function of G(x). This and
T

(2.2) imply - t T) 1s bounded. This completes ithe proof.
n-1'"

Remark 1. For n = 2, ro(t) = r4(t) =1 and g(1) = t, Theorem 1 improves
Tong's result [1].

Remark 2. For H(u) = Iulr, where r € (0,1), Theorem 1 improves the
results of Chen and Yeh [2, Theorem 1] and Singh and Kusano [3, Theorem 1] which

require the condition
-]
/. ri(t)dt = w, for i = 1,2,°+*,n-1.

Using Theorem 1, we can prove the following theorem which extiends Theorem 3
of Philos [6].
Theorem 2. Let (2.2) and (2.3) hold. Assume that for some T >0

(2.4) /T”r,(s,)/:rz(u)---f:

rn_1(sn_1)/‘m P(S)H(cwn_'(s,T))dsdsn_'...ds‘
-2 Spe1
< oo

for any consiani ¢ > O, and

(2.5) /:r,(s,)[;:rz(s:)u-/: rn_1(sn_,)[:‘ In(s) lasas__,+++as, < =

n-2
hold. Then every oscillatory solution y(t) of (2.1) satisfies
1im Liy(t) =0 for i=1,2,°<,n~1.

{40
The proof of Theorem 2 is essentially ithe same as that of Theorem 3 in [6],
so we omil the details.

Example 1. The differential equation

]
(ty'(t))'qy(t) = 75%’ t >
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has an oscillatory solution y(i) = %+sin(1nt) but 1im y(1) does nol exist.

{1 +00

In ihis example, condition (2.2) and (2.4) are not satisfied, while (2.3)
and (2.5) are valid.

for

Example 2. Consider the differeniial equation

(e-ty’)”+e-3t_ﬂ&(t-ﬂ) = e-zt[sin t+7cos t-e 2tsin 1],

1 > 0. All conditions of Theorem 2 are satisfied. It has y(i) = e lsin 1

as an oscullalory solution which approaches zero as 1 —> .
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