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1. INTRODUCTION.

With the help of Galerkin finite element methods, Nitsche in his pioneering works
[1)-[3] established error estimates for linear problems, proposed earlier by Magenes
[4]. We extended his analysis to nonlinear problems in divergence form [5]-[6]. 1In
the present work, a single phase Stefan problem with quasilinear parabolic equation in
non-divergence form is considered and under appropriate conditions optimal error
estimates for Galerkin approximation in Lz, H1 as well as Hz norms are established.
We require more regularity assumptions for the present one than for the cases
discussed in [5]-[6], and consequently we improve upon the estimates in Lz—norm.

The organization of the paper is as follows: In section 2, the description of
the problem and the transformed system with some preliminaries are presented. The
weak formulation and Hl-Galerkin procedure are discussed in section 3. Section 4
deals with an auxiliary projection and some approximation Lemmas. In section 5
optimal error estimates in Lz, Hl and Hz-norms for continuous time Galerkin
approximations are established, assuming existence of the approximate solution.
Finally, in section 6 the question of global existence and uniqueness of the Galerkin
approximation is discussed.

2. PROBLEM DESCRIPTION AND DOMAIN FIXING.

The nonlinear heat conduction with change of phase can be modelled as a single
phase nonlinear Stefan problem in a variable domain (1) x (O,TO), where f(t) =
{y-€ (0,5(t)) and S(t) known to be the free boundary . We state this problem as
follows:

Find a pair {U,S}, U= U (y,T), S = S(T) such that U satisfies
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U, - a(v) Uy = 0, for (y,T) e (1) & (0, T\ (2.1)
with initial and boundary conditions

u(y,0) = g(y), for y e I = (0,1) (2.2)

U (0,.T) =0

y( 5eT)

form >0

fort >0

u(s(t),t) = 0, (2.3)
and S, the free boundary satisfies

Sr = —Uy(s(t),1), for T > 0 (2.4)

with S(0) = 1. The above problems is a special case of the general situation discus-
sed in Fasano et. al. [7], where 'a' depends only on U, q = 0 and ¢ = —Uy(S(T),T)
in their notationms.

We use the following notiations. Let Q(T) R be a bounded domain for T > O.

Let (u,v) = f uv dx and 'Iu.'z = (u,u). For each nonnegative integer m, let
Q(t)

Hm(Q(T)) be the usual Sobolev space wm’p(ﬂ(T)), for p =2 with the norm

2 m el 2
= I — u(x,T) dx.
IIUIIHm(Q(T)) 5 llaxj u(x, D) || dx

Further, wm’n(ﬂ(T)) is defined as usual with the norm

aju
= I -
“u“wm,“(ﬂ('f)) i=0 Hale L @(n).

m Al m,®
In case I =Q(t), we shall omit I from H (I), L (I) and W ’® (I) and norm
H"(I) 1is denoted by ||.||m.

If X be a normed linear space with norm II."X and ¢: (a,b) + X, then we
denote by
k B
o]]e = 1 [|2g)e 1<q<=
i “wk’q(a,b;x) 8=0 “atBH a,b;)
and
[] is accordingly defined.
'I Hwk’q(a’b;x)
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m m,®

In case (a,b) = (0,T) and X =H or W’ , we write simply ¢
l' |Iwk’q(Hm)
for [} or ¢ - for ¢ o . For conve-
1 ”wk’q(o,'r;u“‘(l)) I Hwk’q(w“") I “wk’q(o,T;w“" (1)
2
nience, we use ¢x = %%, ¢xx = %;%i ¢t = %% and ¢(1) = ¢(1,t), if ¢ = ¢ (x,t).

Throughout this work, K will always denote a generic constant. On occasion, we will
show that a constant depends on certain parameters, while independent of others.

We shall now state our main assumption on a(.), g and the solution U,S , and
call them collectively 'condition B'.

CONDITION B.
(1) For pe€ R, a(p) > @, where a is a positive constant.

(ii) For p € R, a(p) € c3(R) and there is a common bound Kl > 0 such that lal,
a a and a < K.
lp" 'ppl |PPP|— 1
(iii) The initial function g is sufficiently smooth and satisfies the compatibility
condition that is gy(O) = g(1) = 0.

(iv) The problem (2.1)-(2.4) has a unique solution.
For the existence and uniqueness of the solution of (2.1)-(2.4), see Fasano et.al. [7].
Further it is assumed that the solution U,S of (2.1)-(2.4) satisfies the follow-

ing regularity condition. For an integer r > 1,
ve 10,1 B @@y Wit B @m0 o, wTemy,

1,
SeW (O.TO).

Let iz be the bound for the functions in above mentioned norms.

We fix the free boundary, using Landau type transformation [8]
x = sTH(n)y, T > 0. (2.5)

Further, we introduce an additional transformation in time scale given by
T2
t=t(r) =[ s “(t")dr', (2.6)
0

in order to decouple the resulting transformed system. A routine calculation shows

that the function u(x,t) = U(y,T) satisfies
u, - a(u)uxx = —ux(l)x u,xel, te (0,T] 2.7)
u(x,0) = g(x), x € I; (2.8)

ux(O,t) =u(l,t) =0, t>0 (2.9)
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and the function s(t) = S(t) satisfies

ds _ _
Fra ux(l)s, t>0 (2.10)

with s(0) = 1.

Here, t = T —corresponds to T =T Note that all the regularity assumptions for

o
u,s are carried over to u,s with the bound say K2 and the new regularity
assumptions are collectively called Rl. Further, the integral (2.6) can be rewritten
as

L., with 1) =o. (2.11)

3. WEAK FORMILATION AND HI—GALERKIN PROCEDURE.
Consider the space:

0y 2
H°(1) = {v € H(I): vx(O) = v(1) = 0},

The weak formulation of (2.7)-(2.9) is given by

0
2
(utx’vx) + (a(u)uxx, vxx) = ux(l)(xux, Vxx)’ ve H(I) and t > 0 (3.1)
with u(x,0) = g(x).
0
Hl—Galerkin Procedure. Let Sh (0 <h 5.1) be a finite dimensional subspace of
02 Or,2
H(I) belonging to regular Sh family, for a definition see Oden et. al. [9] and

satisfying the following approximation and inverse properties:

0

(i) For v e Hm(I) HZ(I), there is a constant KO independent of h such that

tne ||v=x||; <&y 0" ||v||,. for 5 = 0,1,2 and 2¢mcrel;
x €S,

0
(1) Forx e s, |fx]|, < ¥, ot Ix]],-

0
Now we call uh: (o,T] » Sh an Hl—Galerkin approximation of u, if it satisfies
@', x )+ (ate™ o ) = P, x ), x € 8 (3.2)
Yex? Xx atlu) Uexr Xxx Yx x? Xxx? X h *
and the initial condition
h
ui(x,0) = Qe(x), (3.3)

0
where Qh is an appropriate projection of u onto Sh at t = 0, to be defined later.

Further, the Galerkin approximations 5L and rh of s and T respectively are

given by



STEFAN PROBLEM WITH A QUASILINEAR PARABOLIC EQUATION 349

2= —ds,, with s (0) = 1 (3.4)
and

dt

h 2 ) -

T- Sh, with Th(O) = 0. (3.5)

4. SOME APPROXIMATION LEMMAS.
Set
A(u;v,w) = (a(u)v__,w_ ) - u (1)(xv_,w_); for ue wl'” v and w € Hz. (4.1)
> xx’ XX X x’ xx”’ ’

The boundedness and Garding type inequality for A can be established by standard

arguments .
1,» 0y
LEMMA 4.1. For ue W™, v and we HXID)

Jacusvm | < w0 v ] o] @)
and

ACwv,v) 25 [y, |12 - eflv, |17 (4.3)
where M, @ and p are constants, but M and p may depend on ]|ux||Lm.

Define

Ap(u;v,w) = A(u;v,w) + p(vx,wx).

0
Note that Ab(u,.,.) is coercive in Hz, that is

Ap(u;v,v) 2_3 "vxx'|2° (4.4)
0
S

Let ue be an approximation of u with respect to the form Ap:

h

Ab(“; u-u,x) =0, X € (4.5)

Now, an application of Lax-Milgram theorem shows the existence of a unique solution U
of equation (4.5).

Consider

0

L = (a(we, ) +u (Db ) - ps, , ue H. (4.6)
0
For ¥ e 12(1), define ¢ € H' H® by
L*(u) ¢ = ¥; xe I (4.7)
¢.xx = ¢'xxx = 0.
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02
Then, for v € H'(I) we get

(v, L*¥(uw)¢) = Ap(U;V,¢)- (4.8)

Thus, defining D(L*) as

s 9
D(L*) = {¢ € H H™: "xx(l) = ¢xxx(0) =0},

we have from the positivity and boundedness of Ap that at least a weak solution

¢ € D(L*) of (4.7) for each Y ¢ L2 exists and the regularity

[elly <o 11¥11, (4.9)

where CO depends on u and its derivatives, holds.
Let N = u - u. We now need to obtain some estimates of N and its temporal de-
rivatives nt, for our future use. The following Lemma proves very convenient for

our purpose.

0
LEMMA 4.2. Let ¥ € HZ(I) and satisfy
0
Ay (us? ,x) = F(X), x € S, (4.10)
0y
where F: H'(I) * R and linear. Let there exist constants Ml and M2 with M1 2 M2
such that 0
HOIRS I T (4.11)
and
[F@)| <my [[e]],, o€ D). (4.12)
Then, for sufficiently small h
[ il | < Xy [M) + inf (“s - x]1,] (4.13)
X € Sh
and
[l < g [(M1+inf0”¢ - x| [ 0%+ My, (4.14)
X € Sh

where K3 = K3(a’p’M’CO;KO) is used as generic constant.
PROOF. Note that

0
Ap(u;‘? 2) = AD(U;° $-x) - F(b-x) + F(d), x € Sy

By coercive property (4.4) for Ap’ we get

o 12 < @7 eaulfo || +m) an [Jox]|, + u, |o[]1-
0

x €S,
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0
For % € Hz, ||0||2 <K IIQxx"' Therefore,

[l ] < @'t ant [fo ||, + 26
0

X € Sh

and the estimate (4.13) follows. In order to get an L2—estimate, we follow here

Aubin-Nitsche duality arguments. For VY e LZ(I), define ¢ € D(L*) by (4.7).
0
Multiply both the sides of (4.7) by & to obtain for u € H2,

@,¥) = (,L* (u)¢) = A (u;?,¢)
= A (usd ,9-x) + F(x - ¢) + F(¢)

< [M"éxx‘l inf "¢ 'xllz + M, inf ”¢ -x'lzl + M2|'¢,|4

0 0

X €S X €S

h h

<o ffo, f] ke + bk n? o+ ][4 ]

4° (4.15)

From (4.9), (4.13) and (4.15), we obtain the required estimate (4.14).
The next Lemma contains the error estimates related to n and nt.

Lemma 4.3. For t € [o0,T], the following estimates

IInlly <%, 03 []u]l, (4.16)

and
el < % 8™ ful |, + Hoglly)-
j=0,1,2 and 2 { m < r+l, (4.17)

hold. Here KA and K5 are positive constants depending on parameters expressed

through the following expressions that is
K, = K, (K)Ky) and Ky = Ko(Ko K, KqoK,, ||ut||w2’° and Hu”wz"').
PROOF. Put ¢ =n and F = 0 in the previous Lemma 4.2 to get

[l | < & 1ng [|nx]],
0

X € Sh

<Ky inf fJu-v||,, v=x+ues

X €8,

h

<K&y b2 [ fuf| s 2 < m g e
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0
For n € H2, lln'l S_I'nx" and |'nx'[ S-l'nxx‘|' Hence the result (4.16) for j = 2.
Similarly, we get the estimate (4.16), for j = 0, consequently, the estimate for Hn”l

follows from the interpolation inequality,

lntly < 1112 (g1

In order to estimate nt’ we differentiate (4.5) with respect to 't' and obtain

(4.18)

i _ ,rda(u)
Ap(u,nt,x) == Ugp ") Ny Xe) ¥ 0 (D) Gy X )

0
Identifying the right hand side of (4.18) with F(x), we see that for ¢ € H2(I)

'F(‘b)' S K6 ”nxx” H¢xx‘|’

where KB depends on K1 and "ut'|wl,ﬁ'

0
Further, for ¢ € D(L*) and u € Hz, we get on integration by parts

F(9) = (0 ,(a (o)) = v, (D(,0xb ) )

= - (e (e, ) ) +u (1D, (x8, D)

XX XX

and

[r)] <& [Inf] [lefl,
where K, =K (Kl’llutxx'lﬁW’ "uxx’|ﬁ” and llut||w1’°).

Thus, Lemma 4.2 is applicable with Ml = K¢ IInxx’I and M2 = K7 ||n|| and we get
the desired estimate (4.17) for j = 0,2. For j = 1, as usual we make use of the

interpolation inequality. We shall also need later the following estimate for nx(l).

LEMMA 4.4. There is a constant KB = KB(m,KO, M; K4) such that for 2 < m < r+l.

In (D < kg 82T | ]u]

.
m

0
PROOF. Define an auxiliary function ¢ € H4 H2 as a solution of

L*(u) ¢ =0, x €I

¢ 0;

| =
xxx ! x=0

¢ = 1.

xx'x=l
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Multiplying by n the first equation and integrating by parts, we obtain

afn (1] < [a0) n (D] < [a Cusn,e)]

0
LA (usn, %), X € Sy

< |Inlly ans [foexll,

xeSh

-2
< T D ul | e,

Hence, the result follows.
5. A PRIORI ERROR ESTIMATES FOR CONTINUOUS TIME GALERKIN APPROXIMATION.

Throughout this section, we assume that there are positive constants K* and ho
0

such that a Galerkin approximation uh € S, in (3.2) exists and satisfies,

h
||uh|lK.(H2) <KE, for 0 <h<hy, 5.1

where uh(x, 0) 1is defined as th, satisfying

0
A (g5 8 - Q8 X) =0, x€S5. (5.2)
h -~
Clearly, u (x, 0) = u(x, 0).
Let §=uh-; and e=u-uh=n-;.

THEOREM 5.l1. Suppose n = u - U satisfies (4.5) and uh, the Galerkin approx-
imation of u is defined by (3.2) with Qh given as in (5.2). Further, assume that
(5.1) holds. Then, there is a constant Ky = l(9(a, p, K*, Kl’ K, » K and K8) such
that for m > 4

[egll +8 [le gl < KB ([ lu|] + | ). (5.3)
x L“(LZ) XX L2(L2) 9 t LZ(Hm) LZ(hm)
PROOF. From (4.5) and (3.1) with v = x, we get
~ ~ 0
(up s X ) + Aj(u5 v, X) == (M s x ) +Plu, X ), X € Spe
Subtracting this from (3.2), we obtain
( Y+ A @ a0 - A (g E, 0 = ( ) - p( )
Sex Xx oo u, X o (U5 u, X L p(n_» Xy,

+p (;x, xx) (5.4)
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But

h h h
A, (u; u, x) - A, (u3 u, x) = (alu) T 5 X, )

+ (Ta™ = a (W15, %) = u (DS, X, ) + 0 (D un, x )

X

- (DGl ) ) e G, X)) (5.5)

From (5.4)-(5.5) with X =&, it follows on integrating by parts with respect to x
the two terms on the right hand side of (5.4),

1d 2 h
59 IlcxH +@e e )=, ) *e (g ) +u (DGE, &)

+(fatw -2 @HTT_, 5 ) -0 (DG, ¢ )+ 8 (D(xal, § 0.

Using a(.) > @, (5.1) and replacing T by u-~-n, we obtain
1d 2 2
7 ae e l™ e fleg 17 < Uin e finll+ % fle 1+ & (] In]] o el 2

[Intly + &gl o+ fle D+ xr O e ]|+ refo, O] [lzl]- (5.6)

0
Since |;x(1)| < ”;x”1/2 “?;xx”l/2 for ¢ € H2, applying Young's inequality for the

€ 2

2
last term and the inequality ab S;—e + 7 b, a, b > 0; € >0 for the remaining terms

0
in (5.6), we get using “t#” w < ”¢x” for ¢ € H2
L

L& e 1P + o e 12 < kgt [leg lI? + k@& Ky, k%, 05 ©)(]n | |?

2 2 2
s |12+ I+ {InlIT [In]15)
2 2
+ x5 ©) |[n] |5 |fe,] 1+ kg, x, e e e ]
Now with appropriate choice of €, Klo(e) can be made less than or equal to a/2.
With this choice of €, we get by integrating with respect to 't and using

Gronwall's inequality the following

t t
[MIECRLY| el (P2 < R Ry k85 00 [ (] n[]7 + [ ]2

+ g1+ [} {13 aer
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From (4.16)-(4.17) and (4.19) with 2(m-2) > m and 2m - 3 > m that is m > 4, we get
the desired estimate (5.3).

COROLLARY 5.2. Let all the assumtions of the previous theorem hold and the
0

finite dimensional subspace Sh satisfy the inverse property. Then there is a

constant K“ depending on K9 and KO such that for r +1>m> 4,

r + r + h ||7
L L [ N [T

). (5.7)

<K, WP ( +
S M1 HUHLZ(Hm Hutlle(Hm)

)

PROOF. From the estimate (5.3) and ”C” < H§XH for ¢ € S we get

h?

o] o + |le]] o < Ky, h™( + ).
” “L (L2) “ HL (Hl) 2% ”“”Lz(ﬂm “ut”Lz(Hm

) )
0
By inverse property for Sh, we have
-1 0
”‘3||L~(H2) <Ky h HCHL"(HI)' e s,

Hence the result (5.7). From Theorem 5.1, Corollary 5.2, Lemma 4.3 and triangle in-
equality we get the following theorem.
THEOREM 5.3. Let the solution u of (2.7)-(2.9) satisfy the regularity

condition Rl. Further, suppose that there are positive constants ho and
0

K* (K* > 21(2) such that an approximate solution uh € Sh of (3.2) satisfying (5.1)

exists in I x (0,T] for 0 < h hO. Then, the following estimates hold for r > 3,

<K hr+l—_‘]’

) 3 =0,1,2, (5.8)

lell = s,

where K,, = K

12 12(‘(4’ Ky and KZ)’ Besides, for sufficiently small h and r > 3,

||uh||L¢(H2) < 2K, < K (5.9

and consequently, can be choosen independent of K*.

K
12
PROOF. The estimates (5.8) for j = 0,1,2 are immediate from the Theorem 5.1,

Corollary 5.2 and Lemma 4.3 by triangle inequality. To prove (5.9), we note

h
11 e € ol # Hlellm o

r-1
< l(2 + l(12 h

I~

ZKZ, for sufficiently small h and r > 3.
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We are now looking for approximations of U and S, where the pair {U, S} is the

solution of (2.1)-(2.4). The Galerkin approximations Uh and Sh are given by

oy, 1) = uMx,0) (5.10)
h
s (1) = Sh(t) (5.11)
where,
y = sh(t)x, (5.12)
T=T.
and T are defined by (3.4), (3.5) respectively.

s
h’> 'h
THEOREM 5.4. Suppose that the condition B and the regularity condition R1

are satisfied. Then the following estimates hold for r > 3,

||s—sh||L,(0 oy G (5.13)
)
e - 7,1 o1y owth (5.14)
L (0,T
)
and
[o-v?]]| o § =0 ™y, 5 -0,1,2, (5.15)
(0,1 W@ (r))
where ".l' is interpreted as
T
¢l « . =10 fel] 5.  ar
L “L ©,r; W@ 0 d lqu(r))
with 4 (1) = (0, min (S(1), S (1))).

PROOF. From (2.10) and (3.4), we have

t t
|s-sh| S_g (I“x(l)' + |cx(l)|) Isl dt' + é Iui(l)' Is—shl dt'.

An application of Gromwall's inequality and the estimates (4.19), (5.3), for

m=r71+ 1 gives

s—s
ol }

)< K(K,) {”nx(l)HLz(

+ |l )
T) ”" ”LZ(O,T)

»

< KK, , k)2 +
2 KB 'UILZ(Hr+1) 'ICXXIILZ(LZ)}

13 h , for r > 3, (5.16)
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The estimate (5.13) is immediate from (5.16), if we note that

S-5 - - .
I' hll *0.7.) lls Sh||L°(O,T)

Further, the estimate (5.14) follows from (2.11), (3.5) and (5.16). Finally since

Ho-u"]] o

[ Jo-"]] s g .
L (0,Ty; H(@(1))) L(0,T; W(D)

we obtain the required estimate (5.15).
6. GLOBAL EXISTENCE AND UNIQUENESS OF THE GALERKIN APPROXIMATION.
Now we consider the problem of existence of the Galerkin approximation uh in

the domain of existence of u. Towards this, let us recall (5.4) and note

~

Ap(uh; uh, X) - Ap(u; u, X) = Ap(u; T, X) + ([a(uh) - a(u)] u:x, Xyx)
+ nx(l)(xun, Xpo) ~ Cx(l)(xu:, Xyx)

From the above, we get

Cegr X0 ACuy 2, %) = (i, X)) ey, ) +0@G , x) + ([a(w) -a(uh)]

W) S DG, x )+ e (DG, x ). (6.1)
But,
~ 1 —
a(u) -a(uh) =a e=- é %%-(u te) edE&. (6.2)

Replacing uh by u-e in (6.1) with (6.2), we have

(ctx. X))+ Ab(u; Lyx) ==, x )+e (M, x ) +e (G, x)

32 (2 (nryae (u e, ), x,,) N (1) (xlu e ), X))

- (

OV

+ cx(l)(X(ux—ex), xxx).

0
Substitute e by E(x, t), where E € Hz. Then we get

(Ctx, xx) + Ap(u; T, X) = —(nt, xxx) +po(n, xxx) + o(cx, xx)

] -
-« 5% (u=t®) (n_c)dg(uxx—Exx)’ Xyx

Q=

) =n (1) (x(u-E ), X )

+ ;x(l)(X(ux—Ex), xxx), (6.3)
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which is a linear ordinary differential equation in Z. Therefore, for any E = E(x,t)

there exists a unique solution & of (6.3) with
¢(x, 0) =0 (6.4)

in the interval (0,T].
The equation (6.3) defines an operatorCz7 such that ¢ =::7 (E), for each

0
E € HZ. Since e = n-f, therefore

0
n - f 7] (E), for each E € H2. (6.5)

e

To show the existence of a solution uh of (3.2), we need to show that the operator

equation (6.5) has a fixed point. In other words, we are looking for an e(E) such

that

e(E) = E
0

THEOREM 6.1. Suppose that the finite dimensional space Sh satisfies inverse

property and u is the unique solution of (2.7)-(2.9). Further, let the regularity
0

conditions Rl be satisfied. Then for some &6 > 0, there exists a solution uh € Sh

of (3.2) satisfying ||u-u"|| 2, L8
L (0,Ty; H(I))

PROOF. Set X =% in (6.3) to get
d 2 0~
35 e 12 +3 e gl
<l + o Hnll+ il o Fel D¢ gl ]+ gl

s ol lu ]+ [ DY s ll +e 15,]1
 lagl |+ e D o O] ol

Using ICx(l)l < "Cxlll/z lICxx||l/2, applying Young's inequality for the last term

2 2
and ab S_%E-+ % b, ab>0; € >0 for the remaining terms, we get

~ 2
G e 1P+ 5 s, ]

2
iﬁd”‘kuH2+“H»H’m°HH%H2+QWHK

+ |nx(l)|)(l+||E“§} + KK, Ky, 93 eya+|[e] 12 |]z,]1%

Choosing € appropriately so that 2 = KIA(S)’ integrating with respect to 't' and

there after applying Gronwall's inequality, we get
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2 2 £ 2
g]|TC) < K(K,, K5 p) explk(p, K 5 RIt(I+]||E||", )1 [ {[|n
” ‘Il - 1 2 1 2 'I ||L (HZ) 0 ” t"

2 2 2
+ ({n + In_([DHA+[|E[| o )},

From the estimates (4.16), (4.17) and (4.19), it follows that

4 <K, (T4 T o+ 2Dy (g2 )}, (6.6)
[T el o
where KIS = KlS(Kl’ K2, KA’ KS’ p and llE,l ® 2 ). Thus we have
L (H7)
el o < |n + |z
el ez < IH1a 2+ Hlell oo
(6.7)
L

-1
nl| o + K H 13 .
[P TP
For ||E]| , , <8 and from (4.16), (6.6), (6.7), we get
L (H7)

r-1

h , where K §).

“e“Ln(Hz) < K16 16 = Kl6(K15’ K“, KO;

Therefore, for sufficiently small h

< 8.
lell o 2 <

Now, an application of Schauder's fixed point theorem guarantees the existence of an

E such that e = E, which is a solution of the operator equation (6.5). The
uniqueness of the approximate solution uh is easy to prove. So we formalize the
above in the form of a Theorem.

THEOREM 6.2. Let all the hypotheses of the Theorem 6.1 be satisfied and let
0

K > 0. Then there exists one and only one solution uh € Sh of (3.2) in the ball

{'lu—uhll ® 2 <K, for sufficiently small h and r > 3.
L (H)
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