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ABSTRACT: In this paper we continue the study of finite p’-nilpotent groups that was

started in the first part of this paper. Here we give a complete characterization of

all finite groups that are not p’-nilpotent but all of whose proper subgroups are p’-
nilpotent.
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1. INTRODUCTION.
We consider only finite groups. The concept of p’-nilpotency was introduced in

[1]. Briefly, a p-closed group is p’-nilpotent if it has a nilpotent Sylow p-comple-

ment. In this paper we consider groups which possess a large number of p’-nilpotent

groups where the prime p remains the same for the several subgroups or it differs from

subgroup to subgroup. Here we rely heavily on the theorem of N.Ito in which he proves
that a minimal non-p-nilpotent group is a minimal non-nilpotent group. K. lwasawa
separately.

We show that a group in which every two generator proper subgroup is p’-nilpo-

tent is either p’-nilpotent or a p-nilpotent minimal non-nilpotent group. Then we
study the case when the proper subgroups are either p’-nilpotent or q’-nilpotent and

show that such groups are always solvable. The main theorem of this paper completely

classifies all simple groups with every proper subgroup p’-nilpotent for some prime p.

Notation and terminology are standard as in [2].
2. DEFINITIONS AND KNOWN RESULTS.

For the sake of completeness we give the following definition and result from [1].

DEFINITION 2.1 G is a -nilpotent group, x a set of primes, if G#- G and

G/Ge a nilpotent n-group. Let P_ denote the set of all primes. When P_- {p}, we

say that G is a p’-nilpotent group.
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LEMMA 2.2 G is p’-nilpotent if and only if G is q-nilpotent V q # p. (see
Corollary 2.4 of [1])

THEOREM 2.3 Let G be a group such that all proper subgroups are p-nilpotent but

G is not p-nilpotent. Then

(i) every proper subgroup of G is nilpotent,

(ii) IGI paqb p 9( q

(iii) G has a normal Sylow p-subgroup; for p > 2 exp (Gp) p and for p 2 the

exponent is at most 4,

(iv) Sylow q-subgroups are cyclic. (see Satz 5.4 of [2])
Combining Lemma 2.2 and Theorem 2.3 we have the following theorem.

THEOREM 2.4 Let G be a group with the property that all its proper subgroups

are p’-nilpotent for the prime p. Then G is either p’-nilpotent or G is a p-nilpotent

minimal non-nilpotent group.
3. MINIMAL NON-p’-NILPOTENT GROUPS.

In Theorem 2.4 we required that all proper subgroups be p’-nilpotent. We now

weaken the hypothesis in Theorem 2.4 by requiring only that those proper subgroups

that are generated by two elements be p’-nilpotent.

THEOREM 3.1 Let G be a group with every proper subgroup generated by two ele-

ments p’-nilpotent for the prime p. Then G is either p’-nilpotent or G is a p’nilpo-

tent SRl-group.

PROOF Suppose G is not p’-nilpotent. Using 2.2 G is not q-nilpotent for some

q p. Using Theorem 14.4.7, 217 of [3], there exists an r-element x and a q-sub-

group Q such that x NG(Q) CG(Q), r q. Consider H Q<x>. Clearly IHI qarb.
CASE I. r p.

If H < G, then V y Q, <x, y> is p’-nilpotent by hypothesis, i.e., <x, y> is p-

closed. Since IHpl Ixl, this means that y NG(<X>) V y Q; i.e., Q _< NG(<X>),
i.e., H Q x <x>, a nilpotent group, i.e., x CG(Q), a contradiction. Hence H G

with Hq Q Gq G and Gp <x> G. Let K < G. Then K Ql<Xi> where Q1 -< Q"

Gq .:: G implies Kq-: K. If K is generated by two elements, then K is p’-nilpotent

by hypothesis, so Kp-= K. Thus K is nilpotent. If K is not generated by two elements,

then V k K, <k, xi> is p’-nilpotent and hence <k, xi> is nilpotent. Hence x CG( k).

Thus x commutes with all q-elements in K and hence K is nilpotent. Thus all proper

subgroups of G are nilpotent, so G is a p-nilpotent minimal non-nilpotent group.

CASE 2. r p.

IHI qarb Suppose H < G V y Q <x y> < H < G By hypothesis x y- is

p’-nilpotent. P Z IHI implies then that <x, y> is nilpotent, i.e., xy yx V y Q;

i.e., x CG(Q), a contradiction. Hence H G. As in Case 1 we can conclude again

that G is a p-nilpotent minimal non-nilpotent group. Q.E.D.
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Since p’-nilpotency is inherited by subgroups the condition of 2.4 follows if all
maximal subgroups of G are p’-nilpotent. In 3.1 we required only the proper subgroups
generated by two elements to be p’-nilpotent. In both cases G was solvable. We now
show that if we require only the core-free maximal subgroups to be p’-nilpotent, then
G is solvable under suitable conditions.

THEOREM 3.2 Let G be a group with at least one core-free maximal subgroup. If
G has the following properties:

(i) Sylow 2-subgroups of G have all their proper subgroups abelian,

(ii) all core-free maximal subgroups of G are p’-nilpotent for the prime p, then
G is solvable.

PROOF Suppose that all maximal subgroups of G are core-free. By hypothesis
then all maximal subgroups of G are p’-nilpotent. Using 2.4 G is then solvable. So
assume that G has at least one M <. G with MG # 1. Thus G is not a simple group. We

now assume that G is not solvable and arrive at a contradiction. First we show that
all core-free maximal subgroups of G are conjugate; clearly we can assume that G has
at least two core-free maximal subgroups M1 and M2. Let N be a minimal normal sub-

group of G. Then G MIN M2N, so [G N] [M1 M1 ( N] and

[G N] [M2 M2 .l N].

CASE 1. p [G N].
Hence p IMil, 1,2. M p’-nilpotent implies M NG(Pi ), where Pi is the

Sylow p-subgroup of Mi. Hence Pi is a Sylow p-subgroup of G. Since P1 and P2 are

conjugate, this means that MI and M2 are conjugate.

CASE 2. p [G N1.
Hence p [M M (l N]. If p IMil, then M are nilpotent. Just as in Case

1, MI will then be conjugate to M2. Thus we assume that p IM1land p IM2!. Hence

MI NG(P1) and M2 is nilpotent. Moreover, the argument of Case 1 shows that M2 is a

Hall subgroup of G. If M2 is of odd order, then using Thompson’s theorem on solva-

bility of a group with a nilpotent maximal subgroup of odd order we see that G is
solvable. Since we have assumed that G is not solvable, this means that M2 is of even

order. If M2 is not a Sylow 2-subgroup of G, then using Satz 7.3, p.444 of [2] we see

that G M2N with M2 h N I. Since 2 INI, N is solvable. Thus N and G/N are sol-

vable implies G is solvable. Hence we have by choice of G that M2 is a Sylow 2-sub-

group G. Hence G M2N, M2 l N # 1. Let T be a Sylow 2-subgroup of N. Since

N -= G and [G N] 2n, N contains all Sylow p-subgroups of G for p # 2. Hence
M2 h N < M2. By hypothesis (i) M2

h N is abel ian. G/N is a 2-group. Now using
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Satz 7.4, p.445 of [2] we get M2 F N I. This is contrary to M2 /] N i. This

impossible situation shows that it can not happen that p IMII, P IM21- Thus,

using previous arguments we see that MI and M2 are conjugate. Suppose G has another

miniman normal subgroup N I # N. Then G MIN MINI By hypothesis M1 is p’-nilpotent,

so M1 is solvable. Hence G--G/(N N1) c#_ (G/N) x (G/NI) shows that G is solvable.

By choice of G this means that G has a unique minimal normal subgroup of G. Since

all core-free maximal subgroups of G are conjugate they all have the same index in G.

Now using Lemma 3, p.121 of [4] N is solvable and hence G is solvable. This final

contradiction completes the proof. Q.E.D.

COROLLARY 3.3 Let G be a group with the property that all of its nonnormal

maximal subgroups are p’-nilpotent. If Sylow 2-subgroups of G have all their proper

subgroups abel ian, then G is solvable.

PROOF Suppose that all maximal subgroups of G are normal in Go Then G is nil-

potent and hence G is solvable. On the other hand if G has no normal maximal sub-

groups, then by hypothesis all maximal subgroups are p’-nilpotent and hence G is sol-

vable using 2.4. Assume now that G has at least two nonnormal maximal subgroups M,

MI. By hypothesis M, MI are p’-nilpotent, hence solvable. Suppose that MG # I. If

MG M1, then G MGMI. MG and G/MG are solvable implies that G is solvable. Assume

that MG :< MI. Hence MG _< (MI) G. Using a similar argument with (MI) G we have

(MI) G _< MG. Hence MG (MI)G; i.e., all nonnormal maximal subgroups having nontrivial

core have the same core. If all nonnormal maximal subgroups have nontrivial core,

then by the above argument they have the same core, say N. Consider G/N. Using 3.2

G/N is solvable and since N is solvable we have G solvable. Finally, if all the non-

normal maximal subgroups are core-free, then using 3.2 G is solvable. Q.E.D.

So far we considered the condition that many subgroups of G are p’-nilpotent for

the same prime p. In the next theorem we consider the situation that the proper sub-

groups are either p’-nilpotent or q’-nilpotent.

THEOREM 3.4 Let G be a group with the property that all its proper subgroups

are either p’-nilpotent or q’-nilpotent, p # q are primes that are fixed. Then G is

solvable.

PROOF If G is p’-nilpotent or q’-nilpotent, then G is solvable. Assume that G

is neither p’-nilpotent nor q’-nilpotent. If IGI is divisible by p and q alone, then

using Burnside’s theorem on solvability of groups of order paqDmG is solvable. Assume

that IGI has at least 3 distinct primes, say p,q,r. By hypothesis all proper subgroups

of G are r-nilpotent using Lemma 2.2. Using Theorem 2.3 we see that G is r-nilpotent;

i.e. Gr - G and G GrGrwhere Gr is the Sylow r-complement of G. Gr is solvable by

hypothesis and G/Gr Gr is solvable. Hence G is solvable. Q.E.D.
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EXAMPLE 3.5 Let G A5. Every proper subgroup of G is either 2’-nilpotent,

3’-nilpotent or 5’-nilpotent. G is not solvable.

This example shows that in Theorem 3.4 we can not, in general, replace 2 primes

by 3 primes.

4. MAIN THEOREM.

Example 3.5 shows that when we vary the prime p in the requirement that all

proper subgroups be p’-nilpotent, then the group need not be solvable. In this sec-

tion we completely classify all finite simple groups with this property. First we

prove the fol owing lemma.

LEMMA 4.1 Let G be nonnilpotent dihedral group of order 2m. If G is p’-nil-

potent, then m 2apb.
Next we state and prove the main theorem. In the proof of this theorem we will

need Thompson’s classification of minimal simple groups and Dickson’s list of all sub-

groups of PSL(2 pn). Also, we need details of the Suzuki group which are given in

[5].

MAIN THEOREM Let G be a nonsolvable simple group with the property that all its

proper subgroups are q’-nilpotent for some arbitrary prime q. Then G is one of the

following types:

(a) PSL(2 p), with p2 1 O(mod 5), p2 1 O(mod 16), p > 3, p 1 22r
and p + 1 2sj or p 1 2r and p + I 22sj where r,s are odd primes, i,j _> O.

(b) PSL(2 2n), n is a prime, 2n 1 r 2n + 1 sj r,s i,j as in (a)

(c) PSL(2 3n), n is an odd prime, 3n I 22r and 3n + 1 2sj or

3n 1 2r and 3n + 1 22sj r s i,j as in (a)
Conversely, if G is one of the groups listed above in (a), (b) or (c), then G is

a simple group with all its proper subgroups q’-nilpotent for some prime q.

PROOF Since a q’-nilpotent group is always solvable, all proper subgroups of G

are solvable. Hence using Thompson’s list of minimal simple groups (see [6]), we con-

clude that G is one of the following types:

(i) PSL(2 p) where p > 3, p2 I O(mod 5),

(ii) PSL(2 2r), r is a prime,

(iii) PSL(2 3r), r is an odd prime,

(iv) PSL(3 3),
(v) the Suzuki group Sz(2r) where r is an odd prime.

Now we use the subgroups of PSL(2 pf) listed in Hauptsatz 8.27, pp. 213-214 of [2].
For easy reference we give this list below and refer to it as Dickson’s list. Dickson’s

list of subgroups of PSL(2 pf)-
(i) elementary abelian p-groups,

(ii) cyclic groups of order z with zl(pf _+ 1)/k, where k (pf 1, 2),
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(iii) dihedral groups of order 2z where z is as in (ii),

(iv) alternating group A4 for p 2 or p 2 and f z O(mod 2),

(v) symmetric group S4 for p2f 1 O(mod 16),

(vi) alternating group A5 for p 5 or p2f 1 O(mod 5),

(vii) semidirect product of elementary abelian group of order pm with cyclic

group of order t with t (pm 1) and t (Pf 1),

(viii) groups PSL(2 pm) for m f.

In Dickson’s list, the subgroups in (i), (ii), (iv) and (vii) are q’-nilpotent

for some prime q. Using the possible choices for G listed above, Dickson’s list (viii)
can not be a subgroup of G. S4 is not q’-nilpotent for any prime q. Hence using

Dickson’s list (v) we have p2f 1 O(mod 16). Also, A5 being a simple group can not

be a proper subgroup of G. Thus, from Dickson’s list (vi) we have p2f I O(mod 5).

Using Lemma 4.1, z 2avb where v is a prime. Using these observations and Lemma 4.1

it is a matter of routine verification that the Thompson’s list of groups (i) (iii)
given earlier would be a choice for G.

(i) PSL(3 3).
Considering K PSL(3 3) as a doubly transitive group on 13 letters, the sta-

bilizer of a point will be a maximal subgroup M with IMI 33.24. M GL(2,3)
(Z3 x Z3) shows that M is not p’-nilpotent for any prime p. So PSL(3 3) can not be

a choice for G.

(ii) Sz(2q), p an odd prime.

Using the notation and results used in Suzuki [5], we will now verify that Sz(2q)
has a subgroup, namely NL(A1), which is not s’-nilpotent for any prime s, and thus

Sz(2q) can not be a choice for G.

CASE 1 s 2.

Using Proposition 15, p.121 of [5], NL(A1)/A1 is cyclic. If NL(A1) is 2’-nilpo-

tent, since INL(AI)/AII 4 and IAII is an odd number, we will have NL(AI) to be nil-

potent. Hence every element of odd order commutes with every 2-element. This is

contrary to Lemma 11, p.135 of [5]. Hence NL(A1) can not be 2’-nilpotent.

CASE 2 s # 2.

In this case NL(A1) has an abel ian subgroup which is a complement of a Sylow s-

subgroup of NL(A1). Again, using Lemma 11, p.135 of [5], such a subgroup does not

exist. Thus NL(A1) is not s’-nilpotent for any prime s. Thus Sz(2q) can not be a

choice for G.
Conversely, suppose that G is one of the groups listed in the statement. Clearly

all the groups are simple. First consider G PSL(2 p) as in (a). From the list

of subgroups of PSL(2 p) given in Dickson’s list, the subgroups in (i), (ii), (iv)
and (vii) are q’-nilpotent for some prime q. (v) and (vi) can not be subgroups of G

because p2 1 O(mod 5) and p2 1 O(mod 16).
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Suppose G has a subgroup H as in (iii). IGI p(p2-1)12. IHI 2z with

z (P + 1)/2. Suppose z (P 1)/2. (p 1)/2 22ri/2 2ri. z 2ri IHI 2z

Hence H has a cyclic normal subgroup of order z, say K. If IKI rI where 1 i, then

IHI 2rI and hence H is r’-nilpotent. If IKI 2rI then Kr char K H implies Kr H

Also, Kr Hr since IHI 22rI Thus H is r’-nilpotent in this case as well

Suppose z (P + 1)/2. If p + 1 22sj, then as in the above argument we get H
to be q’-nilpotent for some prime q, so assume that p + 1 2sj. z (P + 1)/2

2sJ/ 112 sj. Thus z s where 11 =< j. Clearly H is s’-nilpotent in this case as

noted in the previous argument. Thus all proper subgroups of G are q’-nilpotent for

some prime q when G is as in (a).
Next consider G PSL(2 2n) as in (b). In this case z 2n + 1) and

2n 1 ri, 2n + 1 sj where r,s are odd primes. Thus if H is a subgroup of G of

order 2z, then clearly H is q’-nilpotent for some prime q. Thus all proper subgroups

of G PSL(2 2n) as in (b), are q’-nilpotent for some prime q. Finally consider

G PSL(2 3n) as in (c). In this case z 3n + 1)/2. The argument given earlier

for the case G PSL(2 p) applies here as well. Thus we complete the proof of the

main theorem. Q.E.D.
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