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ABSTRACT. In this paper, we study the quasiuniqgueness (i.e., f1 = f? if fl - f2
is flat, the functior f(t) being called flat if, for any K > 0, t* f(t) » O as
t » 0) for crdinary differential ecuations in Hilbert space. The case of inequali-
ties is studied, too.

The most important result of this paper is this:

THEOREM 3. Let B(t) be a linear coperator with domair DB and B(t) = Bl(t) +
Bz(t) where (Bl(t)x,x) ic real and Re(BZ(t)x,x) = 0 for any x e DB’ Let for
any x e DB the followirg estimate hold:

(le,x

)
XX xﬁ2 + Re(le,Bzx) + t(Bl(t)x,x) > -Ct[](Bl(t)x,x)| + (x,x)]

||le -
with C > C.
If u(t) is a smooth flat solution of the following inequality in the interval
t el = (0,1].
I£g2 - Bt < ta(t)]ult)]

with non-negative continuous function ¢(t), then wu(t) = 0 in I. One example
with self-adjoint B(t) 1is given, too.
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0. INTRODUCTION.
In this paper we study the quasiuniqueness of solutions of the abstract equation
of the form
= B(thu, t 1=[0,T], C<T e (0.1)

Here B(t) s an unbounded non-symmetric operator in Hilbert space. The quasiuni-
queness of solutions of a somewhat more general problem of the form

Itge - B(t)u(t)] s to(t)lu(t)] (0.2)
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is stuvied too. Here B(t) is of the same type as in (0.1), ana ¢(t) 1s a contin-
uous nen-negative function ir the interval I,

Recall that by quasiuniqueress we mean uriqueness in the class c¢f functions that
aiffer by flat functicns. We say that the furction u(t) 1s ¢ flat furction if

Yk >0, t-ku(t) WO .

in Section 1, we study the simplest model, which is turther developed in Section
2. In Section 3 the main theorems are obtained: Thecrem 3 for the problem (0.2) and
Theorem 4 for the problem (0.1). Our conditions of quasiuniqueness cereralize the
corresponding conditions cf [1] (we do not present the analog of Theorem 1-1 of [1]
since it is trivial). Theorem 2 of secticn 2 corresponds to Theorem 1-3 of [1] and
generalizes Theorem 1-2 of the same paper. Our Theorems 3, 4 of Section 3 are a
further generalization of Theorem 2, section 2 as well as of Theorems 1-2, 1-3 of
[1]. Section 4 is devoted to remarks about previous sections. We point out that n
the paper we used methods different from those of Alinhac-Baouendi in [1].

Problems (0.1), (0.2) and theose which can be reduced to them were recently
studied by a number of authors (see [1-6]). Thus in [4] an example of & particular
equation which could be reduced to the form (0.1), where B(t) = B(C) is self-
adjoint, was considered, and the quasiunicueness was proved for it. Further in [2]
and [3], equation (0.1) was studied for B(t) = B(0) + tBl(t) with E(0) bounded
(Fuchs-type equation). In the paper [5], the quasiunicueness was proved for a
certain class of elliptic operators with a degeneration in a single point. Condi-
tions which are difficult te verify were imposed, but a simple class of elliptic
operators satisfying them was indicated. In our paper [6] elliptic equations with a
possible degeneration on a hyperplane or in a sinale point are studied. In [6], the
quasiuniqueness was proved for (0.1)-(0.2) with self-adjoint operator B(t).

Methods employed here were first used by Agmon and Nirenberg ([7], [8]) for
studying the Cauchy problem in the non-degenerate case.

1. MODEL CASE.

Let H be a Hilbert space with scalar product (-,+) and norm [-], I 1is the
interval [0,T] with 0 < T < 4+, ¢(t) a continuous non-negative function on T,
u(t) e Cl(I,H), A, a linear operator in H, with domain DA and A = A1 + AZ’
Af = A1 the self-adjoint part of A, and A§ = -A2 the anti-self-adjoint part of
A. We shall assume that u(t) ¢ D, and that Au(t) e C(I,H). Set D = t=%.

THEOREM 1. Let u(t) be a solution of the inequality

IDu(t) - Au(t) < to(t)Ju(t)] . (1.1)

We suppose that all the conditions introduced above hold and that commutator

[A,A,] = 0. Let u(t) bea flat function (i.e., ¥ k>0, t™Ku(t) .77 0). Then
u(t) =0 in 1.
PROOF. Let

q(t) = (u(t),u(t)) (1.2)
f(t) = Du(t) - Au(t) , (1.3)

and let (tl,to] be a subinterval of I such that q(t) > 0 for tp<ts to>
¥(t) = 2Re(f(t),u(t))/q(t) (1.4)
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S(t) = exp - fé'__(zl o (1.5)
w(t) = loglq(t) - s(t)] . (1.6)

LEMMA 1.1. Suppose that all the corditions ot Theorem 1 and (1.2)-(1.6) hold.
Then (t) s twice differentiable and satisfies the followirg second-order differ-
ential irecuality in the interval (tl,to]:

sz(t) + 2t2¢2(t) > 0. (1.7)

PROOF. From (1.6) we have

ta(t) = -s(t)u(t)
and

Dg(t) = tq(t) = 2Re(tl,u) = ZRe(Au,u) + wg = 2(Ayu,u) + ¥q
1

De(t) = L39 ;'qs—tq St - q —-(—T(Alu u) . (1.8)

Next it follows from (1.8) that &(t) is tw1ce differentiable, and

_ 2 2
D a(t) = -q-D(Alu,u) - q—?(Alu,u)Dq

>

—Re(Alu Du) - 2(Alu,u)[Z(Alu,u) + yq]
q

S o

o

—Re(Alu,Du) - g‘%(Alu,u) - ;%(Alu,u)z

4 2 2 .4 2y 4
E(A]u,Alu) - ?(Alu,u) + aRe(Alu,f) - -E(Alu,u) + aRe(Alu,Azu) .

Now
_ (Aju,u)
qtiaul? - oA = da - L2

and hence we find

(l’u llz

2,0y _ 4 4 N 4
De(t) = EHAIU —5ult aRe(Alu,f) - q(Alu,u) + qRe(Alu,Azu) .

From (1.4),

(Rqu,u)(u,f)
—Re(A u,f) -—(A u,u) = —Re (Ayu,f) - —
(Aqu,u)
= —Re(Alu - Tu,f)
(Aju,u)
- Hapu - L —a? - din?

and from (1.1)-(1.3),

IF(0)] = to(t)qi(t) ,

A

so we have
2 2 (Auaw) 2 2.2, , 4
De(t) 2 E,HAIU - -——q—uﬂ - 2t%°(t) + aRe(Alu,Azu) .
Re(A;u,Ayu) = 3([A;,A,Ju,u) = 0
and hence we find

p2u(t) + 2t%%(t) 2 0 .
Lemma 1.1 is proved.
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LEMMA 1.2. Let &(t) be a solution of (1.7). Tlhen

2(t) = a(tg) + [toilty) + dclingt | (1.9)
0
where
to
2

C =f t¢°(t)dt . (1.10)

0

PROOF. Let

py(t) = Daft) . (1.11)

Then we heve
De(t) + 11262(t) = £(t) =
and

l(t) =k (to) - 4 f ¢ (‘[)d‘t + f _df(’: T,

C te
t t t t
2(t) = R(to) + zl(tC)]n EE' q 9% / s¢2(s)ds + g} f f(égds .
0 to to to to
On condition that t, v < to, we have

t0 ‘o tos 2(5 K tOf(s
w(t) = o(t) - 2o (t)inl - af [ ) geqr o+ [ ES)year |
0 1'"0 t t 1 T t 1 SeT

We assume that f(s) >0, s,te I, i.e., s+ 120.
We have gé;l 2 0, and for t < to, T < to,

Itodt fofud
t

Next it follows from (1.10) and (].11) that

2,(tg) = ti(t)|t=t0 D£(t)|t=t0 = toi(ty) o

n

t t
f 0s¢2(s)ds < J 0s¢2(s)ds =c

T 0

and
t t t
0 0 0 t
4 gl< | s6%(s)ds < ac [ 91- = 4c In—~ 0
t T t

Now we have

2(t) 2 2(tg) + [toilty) + 4c]1n€§
and

exp(L(t)) 2 expl(to) . exp{[toi(to) + 4c]1n%a}

L
= expl(to) . (t/to)t (t)' be
t=t
From the last formula, °

expa(t) = expa(ty) = (t/tg)2" 2, (1.12)
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where
= 2c 1is dependent on ¢(t) only (1.13)

\Y
u o= %toi(to) is dependent on 2(t) only. (1.14)

lLemma 1.2 is proved.
We now turn to
PROOF OF THEOREM 1. From (1.2)-(1.6),
a(t) = exp £(t)/s(t) , s(ty) = 1, a(ty) = exp 2(ty) ,
t
Pl = 200(0) 17500 = enply Htder)

T

and
[ Y to|u ()] ty
o) B s [U1E M dr < 2 [ Pe()de = 2,
0 t ' 0
where
Y
d = OI ¢(t)dr , (1.15)
~and we have
s'l(t) > exp(-2d)
and
q(t) = e"2dexpm(t) > oztxpi(1:0)12'2(’(t/t0)2"+2u . (1.16)
From (1.2) and (1.6) it follows that
Jut)] = Mlu(tg)(t/tg)™™ (1.17)

where , , are defined in (1.13) and (1.14), and M = ed

Assume that the flat-function wu(t) satisfying (1.1) is not identically zero.
From (1.17) we have that u(t) 1is not a flat function. This is a contradiction.
Therefore Thecrem 1 is proved.

2.  QUASIUNTQUENESS FOR PROBLEM (0.2).

THEOREM 2, Let B(t) be a linear operator with domain DB(t)‘ We shall assume
that u(t) e Dp(¢y and B(t) = Bl(t) + Bz(t), Bf(t) = B.(t), Bi(t) = -Bz(t) and
Re(B(t)u,v) = (Bl(t)u,u), Re(Bz(t)u,u) =0, that wu(t) € C*(I,h), B(t)u(t) eCl(I,H),
and ¢(t) denotes a non-negative continuous function in the interval I.

We assume that the function B(t)x is differentiable for 0 <t < T for all
X € DB(t)’ and set

d

FaB(t)x = B(t)x . (2.1)
Let u(t) be a solution of
Iou(t) - B(t)u(t)] < to(t)Jult)] . (2.2)
such that
1718 .ByTu + Byul < v(t)]B(t)u(t)] + g(t)u(t)] , t e T, (2.3)
or
BB Tusu) + (B)(t)u,u) 2 ~y(t)[(Byu,u) - g(t)u(t)]? (2.3a)

where y(t), g(t) are non-negative continuous functicns in the interval 1. If
u(t) is a flat-function, then wu(t) = 0 in 1.
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PROOF OF THEOREM 2. Let

g{*) = (u(t), u(t)) (2.4)
f(t) = tu(t) - B(t)u(t) (2.5)
and let (tl,to] be a subinterval cf 1 such that q{t) >0 for t) < t <ty
w(t) = 2Pe(f(t).u(t))/q(t) (2.6)
t
s(t) = exp (-, / Utlay) (2.7)
0 T
p(t) = s(t)y(t) (2.8)
o(t) = Tog p(t) . (2.9)

LEMMA 2.1. Suppose that &all the corditions ot Theorem 2 hold. Then g(t) s
twice differentiable and satisfies the following second-crder differential inecuality
in the interval (tl,to:! :

D2(t) + 2ty(t)[Da(t}] + 2tp(t) + 4t%6%(t) + 2t42(t) = 0 . (2.10)

PROOF OF LEMMA 2.1.

tG(t) = 2Re(tult),u(t))

2Re(f,u) + 2Pe(B(t)u,u)
vq + 2(B;(t)u,u)

ti(t) = t%(t} _tds + qt§ _ 2(By(t)u,u)s + ygs - ysq
* plt sq 5q (2.11)

%(Bl(t)ll,u) = %(Blu,u) .

n

Next it follows from (2.11) that g¢(t) 1s twice differentiable, and

pa(t) = Zp(Bju.u) - —g(s u,u)Dq (2.12)
%[(DB u,u) + 2Re(B u,bu)] - —:(B u u\[Z(B u,u) + yq]

. 4
%Re(B u,f) + -(B u Bzu) + —(DB u,u) - —2-( U u) —‘g—(Blu,u) + ERe(Blu'BZU)

Now
B u,u)
4 2 -1 2, _4 (Byuu)
E[“BI“H - q "(Byu,u)7] = Iy - —g—ul
and
2 (Bjusu) 2 4 2 2 4
D (t) = —HBlu - T““ + aRe(Blu,f) + E(DBIU’U) - q(Blu,u) + ERG(BI"’BZU) .
From (2.6),
(Byu,u)
—Re(B u,f) - —-W-(B u.u) = -Re[(Blu f) - (—U )l
4 (B u,u)
= ERe(Blu - -——T]—u,f)
(B u,u)
2 1 2 4,2
> q||Blu Tu[] q[,f[] .

(a) Case (2.3). From (2.3) we have
([B1,Bylu,u) + (DBlu,u) > —Y(t)thl(t)U(t)-MU(t)H-I-B(t)-tHu(t)ﬂz

and

B
10 IIB u- Mﬂﬂ q||f|!2 - %[y(t) - tiByuf - fuf - e(t) -

24
q I
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or
2, 2.2 .. ‘ (Byou) o oy (t),
De{t) + 4¢°t° + Ziglt) = —ue u - ————-——u“ %—7~|B uf « Juj -
For fixed t, we have
(i) 1(Bqu,u)| 2 %ﬂBIUN < Jul , or
(1) [(8qu,0)| < HiByul - ful .
In case (i),
4] (Bqu,u)]
2 v I
Yopul - lul s — 2 = 2Josie)|

and

21(t) + 2ty(t)|Da(t)] + 4t2¢2(t) + 2tg(t) = 0
In case (ii),

2p.92 _ 1 2
(Blu’u) IHB ul} “ " = thB]u“ q,
and from the inequality
2
fa + b]% > Jjal? - |b|?

it follows that

135

(2.13)

(Byu.u) (Byu,u)°
By - ——ul? = Zl8,ul’ l—q > 1801
and
2 2,2 _ 1
0%a(t) + 467 - 2ta(t) > 53018,u]° - 4ty(t)|’B ol - Jul]
= mattegul - 26 tul)® - et 20102 2 2B
and

pZe(t) + 4t%% + 2152 + 2tg 2 0 .

(b} Case {2.3a). From (2.3a) we have

([8y,8,Jusu) + (DByu,u) = -ty (t)[(Byu,u)| - te(t)q(t)

and

(Byu,u)
0Ze(t) » %IIBIU - —é——uﬂz - gmz - %ty(t)I(Blu,u)I - 2tg(t) .

From (2.5) we find
(L < to(t)ad(t)
and from this and (2.11),
(B u,u)

0% (t) + 4tZ2(t) + 2ty(t)[Da(t)] = ,Blu ——?r———uﬂ >0 .

From (2.13)-(2.15) it follows that
020 (t) + a(t)|De(t)] + b(t) > 0

where
a(t) = 2ty(t)
b(t) = 4t2¢2(t) + 2t2y2(t) + 2t8(t) .
Lenma 2.1 is preved.

(2.14)

(2.15)

LEMMA 2.2. Let =&(t) be a twice differentiable function in the interval 1,
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satisfying the following second-crder differential inequality

Woa(t) + ta(t)|Da(t)] + th(t) = 0 , te 1

(z.16)
a(t) sM ,b(t) «sM,Vtel
where a(t), b(t) are non-negative continuous functions in I. Then
2(t) 2 a(ty) + c11n7% + czln% , (2.17)

where 4 is a constant depending on M ,to, t, end < is a corstant depending
only on M and ty- Hence,
exp L(t) = exp E(to) AR L (2.18)

with v, v non-negative, v a ccnstant depending on a and b only, and u» a
constant depending cn a, b and toi(to) .
PROGF. From (2.16), it follows that

02e(t) + Mt|De(t)] + Mt = © (2.19)
is true. We change the variable using the formula
t=e" (2.20)

and for (1) we have
2(1) + Me T|i(x)] +MeTT 20 .
From Lemma 1.2 of [2] we get
T

. te O 0 g
(1) 2 fl.(’l’o) + min{O,ﬂ.(to)}e - (t-ro) -Me e “(r-1,)) . (2.21)

T

From (2.20) and (2.21) we have

(1) 2 ﬁ(to) + min{O,toi(to)}exp(fﬂ)lnE% - M exp(%—)talln;g
0 0

= 2(tg) + max{0,-tyi(tg)texp () Inet + M exp('g—o)tallnt—t

0 0 0
= 2(tg) + u(tg)Ink= + v(ty)Int, (2.22)

0 0
where

u(ty) = max{0,-t i(to)}exp(M/to) (2.23)

depends only on M, tys i(to), and
v(tg) = Mexp(M/t)tst (2.24)
which depends on M and to only. From (2.22) we have
2(t,)
M) L0 (t/tg)" + (t/tg)" . (2.25)
Lemma 2.2 is proved.
REMARK. The theorem proved above corresponds to Theorem 1 of paper [1]. Our
condition (2.3) exactly coincides with the condition (1.6) of [1]. Simultaneously

the condition (2.3) is weaker than the corresponding condition (1.4) in [1]
Indeed, the condition (1.4) of [1] is of the form

t71([8,,8,Jusu) + (Bju,u) = -A(Byu,u) - C(u,u)
with A 20, C > 0. At the same time our condition (2.3) reads
t-l([Bl’leu’u) + (BIU,U) 2 -Y(t)I(Blu,UH - B(t)(u'u) >

with y(t), 8(t) non-negative continuous functions in the interval 1.
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3. MAIN THEOREMS
It can be easily seen frem the proof of Theorem 2 for the case (2.3a) that the
following is true:
THEOREM 3. Let B(t) be a linear operaior with domain DE(t),
B(t) = By(t) + By(t) ,

where

Bl(t)

Bz(t)

We shall assume that u(t) e Dg(t), that u(t) e CH(I,H), B(t)u(t) e cl(L,K).

Let ¢(t) denote a non-negative continucus function ir the interval 1. Let a

flat-function u(t) be a solution of .
I0u(t) - B(t)u(t)] < to(t))su(t)f (3.1)

Bi(t) is the self-adjoint part of B(t),

-Bg(t) is the anti-self-adjoint part of B(t).

such that
I8 —(—)—u(Blu’u) 12+ ([8,,B,uu) + ((DBy}u,u)
|Bju - + ,B,lu,u) + Ju,u
1 u,u 1 2 1 (3.2)
> y(0)t] (Bu)] - s(O)tlu(v)]’
where y(t), g(t) are nor-negative centinuous functions in the interval 1. Then
u(t) = 0 in 1.
Now consider, instead of inequality (3.1), the equation
du _ k]
T B(t)u(t) , (3.3)
with the same assumptions regarding B(t} as in Theorem 3. The following is true:
THEGREM 4. Let., with the assumptions of Theorem 3, wu(t) be a flat-function
and solution of the equation (3.3). Then, if

(Blu,u) 2
2|Byu - gyl + ([B1,B,1u,u) + (tBu,u)

(3.4)
> y(t)t](Byu,u)| - s(t)tlu(t)]? ,
then u(t) =0 in 1.
PROOF. Let
g(t) = (u(t),u(t)) , (3.5)
2(t) = log q(t) (3.6)

and

tq(t) = 2Re(tu,u) = 2Re(B(t)u(t),u(t)) = 2(Byu,u)

<oy - tgt) - 2
ti(e) = B - Zg o) (3.7)
Next it follows from (3.7) that 2(t) is twice differentiable, and

va(t) = Z(Byu,u) - -2—2-(Blu,u)Dq

%{télu,u) - %Re(Blu,Du) - if(Blu,u) - 2(B,u,u) (3.8)

2 4 2.4 4 2
a(tBlu,u) - aﬂ(Blun + aRe(Blu,Bzu) - gf(Blu’“)



138 V. SCHUCHMAN

Now
(Byu,u)
4, Ve 4 2 4 1 2
gyl - ;z(Blu,u) = glBu - —5—ul
and

TRe(Byu.Bu) = Z{(B)u.B;u) + (Byu.Byu)]

.2
= a((-B281 + Ble)u,u)

- £(18,8,u.0)
From this we find
(B,u,u)
2 .4 1l 22 2
De(t) = aﬂBlu -3 ul© + E([BI’BZJU’U) + q(tBlu,u) s (3.9)
and from (3.4) we have
(B usu)
200y 2 2 . 2
D°(t) = a{znslu - ——q——ul + a([Bl,E,‘Ju,u) + q(télu,u)}, (3.10)

N

- By ) |(Bun)| + s(t)hut?
and from (3.7) it follows that

024(t) = —y(t)t|Da(t)| - cta(t) (3.11)

or
2a(t) + v(t)t|De(t)]| + 2ta(t) = 0 . (3.12)
From (3.12) and Lemma 2.2 it follows immediately that u(t) = 0 in the interval 1.

4.  REMARKS.
REMARK 1. Our key step in proving all the thecrems was to obtain an inequality
for ¢(t) of the form
D%0(t) + talt)|Da(t)| + ta(t) 2 0 . (4.1)
Therefore, it follows from (2.12) in the case of equation (3.3) (problem (0.1), i.e.,
when f =y =0), that the following equality holds:

0%a(t) = 3Byul” + %(tB]tu,u) - %Z(Blu,u)z + &([8,8,Ju,u)

(BIU,U) 2 2 (4.2)
= —ﬂBlu - ——?r———uﬂ a{tBlu,u) + a([Bl,Bz]u,u) .
In the course of deducing (4.1), one cbtains the condition (3.4),
(Byu,u)
28u - —;—ﬂn + (tBusu) + ([B),B,Juu) > -ty (t)[Byu,u] - ta(t)ju(t))?

Let us point out that it seems tc us that this conditior, obtained from (4.2),
must be close enough to being necessary (for quasiuniqueness).
REMARK 2. For t =0, (3.4) reduces to
(Byu,u)

2080 - —g—ul + ([8},8,Ju,u)| g 2 O (4.3)

and since
B. = B + B* B. = B - B*
1~ —2 %" 7 >
it follows that

(Blu,u)2 = 71[{(!3u,u)2 + |(Bu,U)|2 + (Bru,u)? + |(B*u,U)|2} .

2
2Re(B,u,B,u) = ([B,,8,1u,u) = 3jBuf? - [B*u®y ,
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and naluﬁ2 = %{HBMZ + Joeup?y - %Pe(Bu,B*u) .
In this case our corndition reduces to the following ore:
%{Buuz + %1B*uu2 + Re(Bu,B*u) - %51(Bu,u)2 + |(Bu,u)|2}
- %5{(B*u,u)2 + 1B*uu) |2y + 3pBug? - %ﬂa*uuzlt=0 20 .
For this condition to hold it is sufficient to have
fPut? - 184} > 0

or
4.4
[81982]‘t=0 z G, ( )
j.e., if u is a flat solution of (C.2) and (4.4) holds, then u =0 in 1 (see
also Remark 6).
REMARK 3. The method of the proof of the theorems concerning the quasiunique-

-

ness of the solution of (0.1)-(0.2) presented in sections 2 anc¢ 3 allows one to
assert, evern in cases when there is no quasiuniqueness, that a2 given solution is
trivial if the appropriate conditions are true for this solution. We have in mind
the coenditions (2.3), (2.3a), (3.2), (3.4).

It may quite happer that these conditions do not hold for all the solutions cof
(0.1)-(0.2). On the other hand, if for some specific solution u(t) of (0.1) or
(0.2) the appropriate condition does hold, then its triviality follows from the
flatness of this specific u(t). Quasiuniqueness of solution of (0.1)-(0.2) follows
in the case when these conditiors are satisfied by the whole class of possible
solutions.

REMARK 4. It fcllows from Theorems 3 and 4 of section 3 that the quasiunique-
ness takes place:

(i) If B does not depend on t, and Bz(t) =0, i.e., for any constant symmetric
operator B.
(ii) If B?(t) =0 and Bl(t) setisfies the condition

(Blu’U) 2 2
CiByu - gyl + (tB,-tu,u) = -y(t)t](Byu,u)| - ta(D)u(t)]® . (4.5)

Here Bl(t) can be replaced by B(t) and C =1 for the problem (0.2) and C =2
for the problem (0.1) correspondingly.
(iii) If Bl(t) = 0.

On the other hand, in case (iii) there even exists a classical uniqueness in the
case of (0.1). This stems from the following:

t%%-= B(t) ,
(t3%,u(t)) = Re(B(t)u,u) = 0 ,

%—t—gT(u,u) = %tg—g =0
and if q(0) = 0, then q(t) =0 for all t.
REMARK 5. The conditions in Theorems 2-4 do not seem natural, at any rate not
at first sight. The following conditions seem more natural:
() (Blu,u) z =y (t){](Byu,u)| + ﬁuﬂz} with y(t) a continuous function in I.
(ii) Re(Blu,Bzu) = %{[Bl,Bz]u,u) > -Y(t){l(Blu,u)l + ﬂuﬂz} with the same y(t).
Then we have, from (2.12),
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(B y,u)
4. t q
“MU*aﬂZEQWﬂ-—%—wﬁ+($MMM+(NP%NNM
2 - Bl el < u? - Za s ¢ ud

or

oe(t) + at??(t) + [2v(t) + ty(£)1IDe(t)] + 2[2¢(t) + ty(0)]full2 0 (4.6)
or, introducing a new function

B(t) = 2v(t) + ty(t) ,
one obtains for o(t) .
DZ5(t) + s(t)[Da(t)] + z(t) + 4t%e%(t) > C
or
25(t) + g(t)|De(t)] + o(t) = 0 . (4.7)

One can show, using the above reascning, that
(a) in the case y(t) = tsyl(t), e > 0, with y;(t) bourded in I, there is
quasiuniqueness,
(b} in the case y(t) =M+ t%,(t), M> 0, ¢ > 0, with y;(t) bounded in I, the
following estimete can be obtained:

Bu(t)1% > ctfu(tg))Zexpl-(v + u) (to/t)2] (4.8)

where

o(r), 1 = min{0,tni(t,))m .
22() M M 0" 0/ 2M

Let us point cut that in (4.8) we have a flat function.
(c) in the case of ¥ e>0,d6>0:¥t [0,6]+(t)<c.
Then the following estimate can be obtained:

lu(£)§% = ctfulty)iZexpl-(v + u)(ty/t)%E] , ¥ e > 0 (4.9)

v - min

where
v =g, w = min{0,tgiltg) = s ty € [0,6] .

We point out thet in this case we have a flat function in (4.9).
REMARK 6. Consider the two following terms with our conditions:

(Blu,u) 2
|Blu - 'Tﬁjﬁ7_"‘ + ([Bl,Bz]u,u) . (4.10)
We may have that the first non-negative term may improve the possible negativity of
the second one. Unfortunately this is not the case. Let {ek} be an orthonormal
basis of the eigenvectors of the operator Bl’ assumed independent of t. Assume
that the expression (4.10) is non-negative. Since the first term is identically zero
on {e.}, we then have ’
([Bl,Bz]ek,ek) 2 0. (4.11)
Taking into account the orthogonality of {ek} and (4.11), we obtain the following:
([Bl,BZ]u,u) >0. (4.12)

i.e., the appropriate term is non-negative.

5.  EXAMPLE.
Let us consider the following equation

28 = 3 [k (02 + 620K, (x)201 = A(t) (5.1)
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where x e g = [-1,17, t € (C,1]. Here H is Hilbert space LZ(Q) with condition

ul, =0 (5.2)

and standard scalar product.
Kl(x), Kz(x) are smooth ercugh (from (%) real-valued functions. In this case
A(t) will be the self-adjoint operator on DA(t)k: H ard

(A(E)u,u) = (K OOF520) + (K, (0240 (5.3)
Voo 9u gu.
(A(t)U,U/ - (Kz(x)ﬁ"gal . (5-4)
Let us consider the following Kl(x) and Kz(x)
3
_ X x <0
kl(x) = { 0 X o0 (5.5)
_ X x <0
K200 = s %o (5.6)
Then from (5f3)-(5.4) we have
_ 3 3u 3u 4 3u su
(A(t)u,u) = (1 + t)(x° &4 +t(x" 2,220 (5.7)
el Lo 279 on (0,+1)
and
] 3 3u su 4 3u 3u
(A(t)u,u) = (x7 £, +t(x £,97) (5.8)
AX 73X Ton (-1,0) AX 73X |on (0,+1)

Theorem 1 of [1] does nct work in this case:
i} A(t) is not negative;
ii)  ([aA(t) + A(t)Ju,u) is not positive for all i > O
iii) there is not an estimate of type [A(t)u| < C(JAu| + fu]) for any C > O.
But from (5.7)-(5.8) we have that
(A(t)u,u) > -2(A(t)u,u) (5.9)
and from Theorem 2, we cbtain that the quasiuniqueness takes place for equation (5.1)
under our assumptions (5.5)-(5.6).
REMARK. Of course, it is possible to construct an example of this
type with C” ccefficients. It is possible also to construct an example of this
type for non-self-adjoint operator A(t).
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