Internat. J. Math. & Math. Sci. 449
VOL. 11 NO. 3 (1988) 449-456

S-ASYMPTOTIC EXPANSION OF DISTRIBUTIONS

BOGOLJUB STANKOVIC

Institute of Mathematics
University of Novi Sad
Yugoslavia

(Received December 2, 1986 and in revised form April 28, 1987)

ABSTRACT. This paper contains first a definition of the asymptotic expansion at
infinity of distributions belonging to ﬂ’(Rn), named S-asymptotic expansion, as also
its properties and application to partial differential equationms.
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1. INTRODUCTION.

The basic idea of the asymptotic behaviour at infinity of a distribution one can
find already in the book of L. Schwartz [l1]. To these days many mathematicians tried
to find a good definition of the asymptotic behaviour of a distribution. We shall
mention only "equivalence at infinity" explored by Lavoine and Misra [2] and the
"quasiasymptotic" elaborated by Vladimirov and his pupils [3]. Brichkov [4] intro-
duced the asymptotic expansion of tempered distributions as a useful mathematical
tool in quantum field theory. His investigations and definitions were turned just
towards these applications. In [4] one can find cited literature in which asymptotic
expansion technique, introduced by Brichkov, was used in the quantum field theory.
This is a reason to study S-asymptotic expansion.

2. DEFINITION OF THE S-ASYMPTOTIC EXPANSION.

In the classical analysis we say that the sequence {wn(t)} of numerical functions
is asymptotic if and only if wn+1(t) = o(¢n(t)), t » », The formal series ngl un(t)
is an asymptotic expansion of the function u(t) related to the asymptotic sequence
{y (©)} if

k
u(t) = [ u () = o (£), t > 2.1)
n=1

for every k € N and we write

@

u(e) = L ou (o) | v (©)}, > (2.2)

n=1

When for every n € N un(t) = cnwn(t), c, are complex numbers, expansion (2.2)

is unique, that means the numbers ¢, can be determined in only one way.
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In this text I will be a convex cone with vertex at zero belonging to R" and
IL(T) the set of all real valued and positive functions c(h), h € I'. Notations for
the spaces of distributions are as in the books of Schwartz [l].

DEFINITION 1. The distribution T (JB' has the S-asymptotic expansion related to
the asymptotic sequence {cn(h)} < I(T), we write it

T(t+h) 2 ] URCR I IRCN R R}l » =, ner (2.3)
n=1

where Un(t,h) 63’ for n ¢ N and h ¢ T, if for every p ¢ 09

<T(t+h), p(t) > ~ I < U (t,h), o(t) > | {c (W}, [[n|] > = nerT (2.4)
n=4

REMARK. 1) In the special case Un(t,h) = un(t)cn(h), unl ;9, n € N, we shall

write

T(t+h) ~ T a (@ e ®m, [nl>=,ne (2.5)
n=1

and the given S-asymptotic expansion is unique.

2) To define the S-asymptotic expansion inf,(Rn), we have only to suppose that in
relation (2.4) T and Un are in f‘ and p inﬁ

Brichkov's general definition is slightly different [5].

DEFINITION 1°. The distribution gfof’ has the asymptotic expansion related to

the asymptotic sequence {wn(t)} on the ray {Aho,A >0}, h e R"

gh - t) - nﬁl e, (€:1) | vy, (M}, A €R, A > (2.6)

where En(t,l) € ,f’ for A 2 )‘o > 0, 1if for every ¢ (J’

B, D), $(0) > - F < e (8a0), 0(e) > | Ly (M}, A > 2.7

Relation 2.6 can be transformed in

£ R L p ) | ), A= (2.8)
n=1

by the Fourier transform, if we take f£f(x) = F-l[g(t)]; p(x) = F_1[¢(t)] and
F[En(t,)\)] = (2‘")n cn(x,A). We denote by F[p] the Fourier transform of p and by
n

F—I[g] the inverse Fourier transform of g. Also, for x,t € R" Kx,t»®» = I xiti.

i=1

In his papers Brilhkov considered only the asymptotic expansinons (2.8) and in
one dimensional case. We shall study the asymptotic expansion not ir f’(R) but in
the whole g&‘(Rn), not only on a ray but on a cone in R". Our results enlarge
Brichkov's to be valued for the elements of oﬁ’(Rn) (Corollary 1), they are proved with
less suppositions (Propositions 5 and 6) or give new properties of the S-asymptotic.

A distribution belonging tof’ can have S-asymptotic expansion inaf)‘ without
having the same S-asymptotic expansion in éo’. Such an example is the regular

distribution f defined by the function

£(t) = H(t) exp(l/(1+t2)) exp(~t) , t € R
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where

H(t) =1, t 20 and H(t) =0, t < 0.

It is easy to prove that for h ¢ R+

Feesm) § 1 L
n

=T 4+ (4 H I exp(-t-h) [{e HZU™}, b > o,
=1 M

But

T

U_(t,h) = 1+ ) HP™ exp(-t-h), n €N, h>0

do not belong todf’.
The regular distribution g defined by the function

g(t) = exp(l+ (1+t2)) exp(t), t € R

belongs tod” but it is not in f°. It has S-asymptotic expansion inuﬂ':

2(t+h) £ oz
n=1

(n—_ll)—,- (1+(t+h)2)1'“ exp (t+h) | {eth(l'“)}, h>w

where I' = R+.
3. PROPERTIES OF THE S—-ASYMPTOTIC EXPANSION.

PROPOSITION 1. Let S € £ and T € O’. If

T(t+h) 2 ; u,(e,h) | {e (W}, Injl > =, ner
n=1

then the convolution

(s¥1)(e+h) ¥ & (s % U)(E,H) | {e ()} bl > = heT (3.1)
n=1

PROOF. We know that

k k
<(S*T) (t+h), p(t)> - I <(S*Un)(t,h), p(t)> = <S*[T(t+h) - I Un(t,h)]. p(t) >.
n=1 n=1

It remains only to use the continuity of the convolution.

COROLLARY 1. If

T(e+h) ° 1 u(eh) | te )} bl > noer

n=1
then
Kk > (k
™®em 1 em | e ml, lInfl>= ner (3.2)
n=1
k k
(k) _ 1 n _ n _
where T = (Dtl...Dtn) T, k = (kl’ cees kn) € No R NO-NU{O}.

PROOF. We have only to take S = G(k)

REMARK. Proposition 1. is valued as well if we suppose that T (cf’ and S € CE.
PROPOSITION 2. Let f, Un(t,h) and Vn(t), ne Nand h € [', be the local

in Proposition 1.

integrable functions such that for every compact set K C R"

©

£(t+h) ~ & U (t,h) | {c (W1, In]l > =, h e, t €K
n=1
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and
k
|[£Ce+n) = = U (e,h) | /ey () SV, (£), t €K, heT
n=1

and Ilh“ 2 r(k,K), then for the regular distribution f defined by f we have

E(evn) 2z U (e,h) | {c (W}, |lnl] > =, ner.
n=1

PROOF. The proof is a consequence of the Lebesgue's theorem.

PROPOSITION 3. Suppose that T1 and T2 belong tod” and equal over the open set
@ which has the property: for every r > 0 there exists a 8 such that the ball
B(0,r) = {x € R", ||x|| £ r} is in {8-h, heT, |n]| 2 B Y. 1f

©

T, (t+h) g nil U (t,h) I {e (M)}, In]l > =, her

then
-]
T, (t+h) 2 nil u (6,0 | {e M}, |In]l > =, ner
as well.

PROOF. We have only to prove that for every ck(h)

lm < [T (t+h) = T,(t+h)] / ¢, (h) , p(t)> = 0, p e (3.3)
||n][+~,her

Let supp p € B(0,r). The distribution Tl(t+h)-T2(t+h) equals zero over -~h.
By the supposition there exists a Bo such that the ball B(0,r) is in {Q-h, he T,
lIn]l =z Bo}. This proves out relation (3.3).

PROPOSITION 4. Let S€®” and for 1 Sm S n

®

D, S(t+h) £ = v (e,m) | {e,m}, lnll > =, ner .

tm i=1

1f the family {Vi(t,h), i € N, h € T} has the properties: D, Vi(t,h) = Ui(t,h),
i€ N, h €l and for a P € JD(R), J po(T)dT =1, and for every Du% Al k ¢ N

k
lim < [s(t+h) - I V_(t,h)]/e (h), p _(t A (t) > =0
[Ib]|>=,her 1=4 1 k omm
where xm(t) =R.f p(tl,...,tm,...,tn) dtm, then
S(t+h) ¥ : vi(eh) | {e;m}, In]] > =, her .

i=1
PROOF. If p € & then p(t) = p_(t )X (t) + ¥(t) where ¥ € O and
l{ Y(Epseeast saeast ) dt = 0.
Now we have the following equality

k k
<IS(Em) = I V(e p(0)> = <[S(es) - T V(60 ey (6)>
i=1 i=1
k ftm
- <[Dtms(t+h) - 121 U, (e+h) ], M YlEgseesusenest ) du > .

It remains only to use the limit in it and Corollary 1.
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PROPOSITION 5. Suppose that S € P, r={her", n-= (0,...,hm,...,0)}, where

m is fixed, 1 £ m £ n and

o
(@, $)(t+h) £ 1 v (t,h) | {c, (W}, |In]| > =, heT
t i i
m i=1
If there exists Vi(t,h), DhmVi(t,h) = Ui(t,h), i € N and if ci(h), i € N are
local integrable in h jand such that
. by
Ci(h) = 1f ci(u) dum + ©  asg hm +>
then ®
s(t+h) ¥ : vi(esn) | {e;ml, lnff > =, her .
i
i=1
PROOF. By L“Hospital's rule with the Stolz's improvement we have for every
pe Hand k € N

k
<S(t+h), p(t)> - < L v (t,h), p(t)>
1lim ,.1=1
h*>» hel ck(h)
k
<(D_ S)(t+h), p(t)> - < I U,(t,h), p(t)>
tn P |
. i=1
= 1lim .
h*e,hel ck(h)

These five propositions give how is related the S-asymptotic with convolution,
derivative, classical expansion and the primitive of a distribution. The next
proposition gives the analytical expression of Un(t,h) = un(t) cn(h).

PROPOSITION 6. Suppose that T € §°, I' with nonempty interior,

©

T(t+h) £ = u (8) ¢ (), |l »= nherT.
n=1

If u # 0, m € N, then u has the form

m
W (t) = I P(t,se..,t) exp(«a, t»), me N (3.4)
m k=1 k1 n

where ak = (alf,...,a:) € R and Pll': are polynomials, the power of them less of k in
n
every ti, i=1,...,n: <«x,t >>=i§1 xiti.

PROOF. By Definition 1 and our supposition

1lim T(t+h)/c1(h) = ul(t) #0 (3.5)
|nf[+=,ner

From relation (3.5) follows that u1 satisfies the equation
ul(t+ho) = d(ho) ul(t), h° €T (3.6)

where

d(h ) = lim c, (h+h )/c, (h)
IIn|[+=,her 1 ot 1
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If ho is an interior point of I and ey is such element from R" for which all the

coordinates equal zero except the k-th which is 1. Then

ul(t+ho+eek) - ul(t+ho) = [d(eek) - d(O)]ul(t+ho).

_ .1
Hence the existence of thd(h)h=° =a, and

1
Dtk ul(t+ho) a,

We know that all the solutions of equation (3.7) are of the form ul(t) =Clexp(«al,txﬂ,

ul(t+h°), k =1,.0.,n. (3.7)

where C1 is a constant and a1 = (ai,...,aé).

The following limit gives u,
<T(t+h),p(t)> - <u,(t),p(t)> ¢, (h)

1lim = <u2,p>
It |, her ¢, (h)

By Corollary 1 follows for i = 1,...,n
<(Dg, - a))T(t+h),p(£)>
i

lim = <(Dt - ai)uz(t),p(t)>
In]|+=, her c,(h) i

Two cases are possible. a) If (Dt -ai) u, = 0, i=1l,...,n, then
uz(t) = C2 exp(«al,t»). i
b) 1If (D —al)u # 0 for some i, then (D -al)u (t) = ¢ exp(«az,t») and u, has
ti 1772 ti i772 2

the form C exp(«al,t») + Pg(tl,...,tn) exp(«az,t»), where Pg is a polynomial of

2
the power less of 2 in every ti’ i=1l,...,n.

In the same way we prove for every u .

PROPOSITION 7. Let T € H” and Q € R" be an open set with the property: for every

r > 0 there exists a Br such that the ball B(h,r) € Q for all h €T, ||h|| 2 Br'

Suppose
s D
T(t+h) ° I U (t+h) | {e (h),e.usc (0D, |Inl]] + =, h €T
n=1
m
for any function cm(h) from Z(I'), then T = I Un over Q.
n=1

PROOF. The statement of this Proposition can be obtained from a proposition
proved in [6]. However, for completeness, we shall give the proof on the whole.

First we shall prove that if for every cm(h) € ()

m
T(t+h) - I. U (t+h)
lim < n=l o , p(t)> =0 (3.8)
[[n]]+=,her e (h)

then there exists a B(p) such that

m
<[T(t+h) - I U (t+h)], o(t)> =0, hET, lInll z 8¢p).
n=1

Suppose the opposite. We would have a sequence hn( r, “hn||->m such that

m
<[T(t+h ) - nil U (e+h )], e(t)> = P, #0,n€eN

then we choose cm(h) in such a way that cm(hn) =P, and relation (3.8) would be false.
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We denote by B_(p) = infB(p). We shall prove that the set {Bo(p)’ P € i%} for every
compact set K& R" is bounded. Let us suppose the opposite; then there exists a
sequence {hk}, h, € r, “hk“ + » and the sequence {¢k(t)}, 9 € ﬂ% such that

— ak # 0o, P = k _ m
<T(t+hk), ¢p(t)> = Ak,p = sy T=T- ¢ U.
o , p <k n=

The constructior of the sequence {hk} and ¢, can be the following. Let ¢k“£%
be such that Bo(¢k) is a strict monotone sequence which tends to infinity, then
< < -
« > 0, k € N such that B (¢, ) +e < “hk“ 2 B () - -
Now, we shall construct the sequence {wp(t)}, wp € BK for which we have

there exist {hk} <T and €

_ ’oa P*k
<T(t+h ), ¥ _(£)> = .
KT la . »k
k
= - AP _. .. -)\P P
Let wp(t) ¢p(t) A1¢1(t) eee Xp_l¢p_1(t), p > 1. The numbers Ai we can find

in such a way that wp(t) satisfies the sought property.
W P (£)> = a and <T(t+h), V() =0, k> p.
For a fixed p and k < p we can find Ag, i=l,...,p~1 so that for k=1,...,p~1

= <T = -AP - -AP
0 = <T(tthy ), ¥ ()7 = A -AL Ay (=eeemho ) Ay

It is easy to see that <T(t+h

Hence
1% P = = -
Xl Ak,l + ...4—lp_1 Ak,p-l Ak,p’ k=1,...,p-1, p > 1.

As Ak K # 0 for every k, this system has always a solution.

’

We introduce now a sequence of numbers {bk}’ bk = sup{ZRIW£i)(t)|, i < k}.
Then the function

Y(t) = pil wp(t)/bpt (%

and this series converges in ﬁ%, thus in ﬁ)as well. With this

®©

<T(t+h,),¥(t)> = pzl <ST(eHhy) s ¥ (6)/b> = ay /by

If we choose c(h) such that c(hk) = ak/bk then <[T(t+h)/c(h)],¥(t)> does not
converge to zero when Ilh“-*w, h € T, This is in contradiction with (3.8). Hence,
for every compact set K there exists a BO(K) such that <T(t+h),¢(t)> = O,IIhH 2 Bo(K)’
herT, ¢ ‘.ékf That means that T(t+h) = 0 over B(0,r), ||h|| 2 B(r), h € T and
T(t) = 0 over B(h,r), ||h|| 2 B(r), h €T,

4. APPLICATION OF THE S-ASYMPTOTIC EXPANSION TO PARTIAL DIFFERENTIAL EQUATIONS.

As we mentioned in [4], one can find cited literature in which asymptotic expan-
sion technique (inéf‘ and in one dimensional case) was used in the quantum field
theory. We show how the S-asymptotic expansion in 9’ can be applied to solutions of
partial differential equationms.

PROPOSITION 8. Suppose that E is a fundamental solution of the operator

L(D) = aan“, a, €R, a € (NV0)™; L(D) % 0 (4.1)

z
la‘;O

such that
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oo

I u (t,h) | {c (W)}, |[b]] » =, b e T. (4.2)
l’l"l n n

w

E(t+h)
Then there exists a solution X of the equation
L(D) X =G, GeE” (4.3)

which has S-asymptotic expansion

o

X(t+h) £ L (G % u_(t,h)) | {c_(m)}, ||n]| » =, h €T,
n=1 n n

PROOF. The well-known Malgrange-Ehrenpreis theorem (see for example [7], p. 212)
asserts that there exists a fundamental solution of the operator (4.1) belonging to
& . The solution of equation (4.3) exists and can be expressed by the formula
X =E * G. To find the S-asymptotic of X we have only to apply Propostition 1.

REMARKS. If we denote by A(L(D),E) the collection of those T € 0 for which the
convolution E * T and L(D)S * E % T exist in 9’, then the solution X = E * G is
unique in the class A(L(D),E) ([7], p. 87).

We can enlarge the space to which belongs G ([7], p. 216).
) The fundamental solutions are known for the most important operators L(D).
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