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ABSTRACT. The study of R-type summability methods is continued in this paper by
showing that two such methods are identical on the bounded portion of the strong
summability field associated with the methods. It is shown that this "bounded

consistency" applies for many non-matrix methods as well as for regular matrix methods.
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1. INTRODUCTION.

In (1] a relation between densities and strong convergence fields was studied for
R-type summability methods (RSM). On the space m, the space of all bounded real
sequences, RSMs are equivalent to the bounded generalized limits (see [2]). In the
main Theorem of [3] Freedman actually proved a consistency theorem for the strong con-
vergence fields of generalized limits. This statement will be explained at the end of
Section 2. In this paper we extend the results of [1] and [3] to obtain a Bounded
Consistency Theorem for strong summability fields of RSMs. We will require a charac-
terization of RSMs in terms of zeroclasses. This paper is a continuation of (2],
therefore we will accept notation and definitions of [1], [2] and [3]. In particular
a class X of subsets of I, the set of positive integers, is called a zeroclass if the

following conditions holds:

(a) A is finite = A € X
(b) A, BeX = AUB e X
(c) AcBeX=>AceX
(@) I¢X
Further, if X € w, r e R and A ©¢ I with I - A infinite, then by x(Z)r

we shall mean that for any € > O there exists N > 0 such that [xn - r| < € whenever

n 2 N and n ¢ A. If X is a zeroclass, then w, = {x € w: x(» r for some A € X and

real r} is called the space of all X-nearly convergent sequences. The sequence space
W contains c, the space of all convergent sequences. By a summability method we will
simply mean a real valued linear functional S defined on some spaces Cs < w. We shall

caili S regular if c c Cs and S(x) = lim x for each x € c. We let
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c.®={(x¢ Cg: S(x) = 0},

S

|CS|° ={x euw |x| ¢ Cso}
and

[Cgl = {xewx-rce |CS|° for some real r} .

The set IC | is called the strong summability field associated with the method S.
A method S will be called an RSM when S is regular and mICsl =|c | (i.e., |c |
solid). If S is an RSM, then [Cg], ICSI are subspaces of Cg ([1] Proposition 4 9)

If S:CseR is an RSM, then XS = (A clI: S(XA) = 0} is a zeroclass where Xp is the

characteristic function of A. We shall say that XS is the zeroclass related to S.

For any x € w and € > 0, let

Ne(x) = {y € w: sup {Ixi - yil: i= 1,2,3,....} < €}

Then the class {Ne(x): X € w, € > 0} forms a base for the topology T_ on w. For any

RSM S‘(Cs’Tw) + R, S is continuous ([2]).

2. BOUNDED CONSISTENCY ON STRONG CONVERGENCE FIELDS.

In this section we first develop a theory of strong convergence fields with the
help of the zeroclass concept.

DEFINITION 2.1. For any zeroclass X we denote

ve= {x € w: For any a > 0, {i :a < |xi|} e X}
Vx ={x € w: Xx-r € on for some r € R}.

PROPOSITION 2.1. For any zeroclass X,

V. is a linear space of sequences. (2.1)
on is a subspace of V- (2.2)

PROOF. Suppose that x,y € Vx,rl,r2 € R with X-T),y°Tr, € on. For each i and

2
for any @ > 0,

|xi-r1| < af/2 and |yi-t2| S of2 = |x1+yi - (r1+r2)| < a.

Thus
{iglxi+yi - (r1+r2)| > a} c {i: Ixi-rll > @f2} U {i: lyi-rzl > @f2}.

By t i ° i
y the definition of V and the properties of zeroclasses {i: lx.-rll > af2} U
i

{i: |y, 1Tl > @/2} € X and {i: |x ity - ()] > a) e x.

Consequently we get
that x+y e V . If k € R, then for any a > 0,
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8, if k =0,

{i: n<|kxi-kt1|} = s
Y {i: of|k| < |xi-rl|}, if k 2 0,

Therefore for any a > 0, {i: u<|kxi-kr1|} € X, which implies kx € V . Hence V is a

linear space of sequences.
(2.2) is obvious.

PROPOSITION 2.2. For any zeroclass X, let Tx: Vx + R be the function from Vx to R
defined by T (x) = r when x-r ¢ on' Then T, is an RSM with domain V_, |vx| =V, and

o

|V |o =V_"~. Further, X is related to T_.
X X X

PROOF. In this proof we will write Tx as T for convenience. First, we show T is
well defined. If x ¢ Vx' T(x)=r1 and T(x)-rz, so that X"T), X°T, € on. then, since on
is a linear space, (x-tl) - (x-tz) = (rz-rl)e € Vx° where e = (1,1,1,....2. From the
fact that for any a > 0

® if a2 |r2-r1|.
{i: ac< |(r2-r1)ei|} =

I, if a< |r,-r|

and {i: a < I(rz-rl)ei|} € X, it follows that r,=r,.
Suppose that x, y € V_ and T(x)sr1 and T(y)ﬂrz. Then X-ry, y°r, € on. Since

on is a linear space, (x+y)-(rl+r2) € on and kx-krl € on for any k € R. Therefore

T(x+y)=T(x)+T(y) and T(kx)=kT(x). Hence T is a linear functional.
Next we have

on = {xew: for any @> 0, {i: a <|x1|} € X}

= {xew: [x| € V.%} = [V |°,

V= VCoec<e = |V |%@ce> = |V |.

Suppose that x € IVxl0 and |y| s |x| (1.e., Iyil S Ixil for any i). Thus for any
a >0, {i: G<|yi|} c {i: @ < [xil} € X and so {i: a <|yi|} € X. Thus we have y ¢ valo

([1] Proposition 1). Hence T is an RSM.

For any A c I,
g A, if 0 < a < 1,

fi: o < x, (1)} = (
[

’ if 1 < a,

o
Hence x, ¢ Ve = lCTIo if an only if A € X. Thus T and X are related.
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Note that these results can be written in the following notation:

(o] o
V. = Cp» v | = |c |vx| = |cT| .

2l
PROPOSITION 2.3. For any zeroclass X, Vx is closed with respect to the topological

space (w,T ).
= n
PROOF. Supposed that x € Vx and choose {xn) c Vx such that #x - xl_ =

sup, |x2-xi|<1/n (n 2 1). Suppose that Tx(xn) =r eR. Since x" converges to x as

n__m
n + =, we have, for any € > 0, there exists N € I such that n,m 2N=1{Ix -x"I_ < €. We

show that limn T exists. Suppose that n,m 2 N. For each i € I,

m m
|tn - |s - x?l + |x2 - x| + lx; - x|
< XM e+ |- |
Clearly |r“ xil e+ i ml
I={i:fr - rm| -e< | - xgl + |xT -}

c {i:(ltn - rm| - €)/2 < Irn - x?l} Ui il - rm|-s)/2<|xT-rm|}.

If |rn - rml > g, then {i:(|rn -r | -€)/2 < |rn - x,|} € X and

! il

{i: i:(lrn - rml - €)/2 < |xi - rml} € X so that Ie X, a contradiction. Hence Irn-rm|
S € and {rn} is a Cauchy sequence of real numbers. Let lim r, =re R.
Now we show that x € Vx. For any @ > 0, we choose N € I such that n > N =

#x-x"_<o/3 and fr,-r| < @/3. For any i ¢ I,

|xi~r| < lxi - x2| + Ixin—rnl + Irn—rl < 2a/3 + |x2 - rn|.

Therefore

(s a<lxgrl) € (i @/3 < [0 - x|}

Since T(x") = T, we have {i: a/3 < |xi - rnl} € X. Hence x ¢ Vx’ and so Vx is
closed.

PROPOSITION 2.4. For any zeroclass X, on is a closed subset of (w,Tw).

PROOF. Tx:(vx’Tw) »> R is an RSM and so it is continuous. Thus Tx-l(O) = on
is closed subset of (Vx,Tm). Since Vx is also closed in (m,Tm), on is closed in
(w,T ).

PROPOSITION 2.5. For any zeroclass X, Bx = Vx (vwhere Gg denotes the closure of
w, with respect to the topology T).

PROOF. Suppose that x € wes T E R and A € X with x(z)r. Then by the definition
of x (K)r, we have, for any a>0, there exist N € I such that {i: a<|xi-r|) c

Au{(1,2,3,...,N}. Since A and {1,2,3,...,N}e X, we have {i: a<|xi-r|}e X. Hence
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XE Vx. Therefore w, © Vx. Since Vx is closed, we have ﬁx c Vx.

Suppose that xeV_ and T(x)=r. For each n, let {i: 1/n<|xi-r|}=An. Then A € X.

Let us define Lew by

r if i eI-An

xn=
i 2
x, if ieA_.

i n
Obviously, x® > r and Ane X, thus " € wy -
n
Since
|x-x, | if ieI-A
lxn-x | =
i
0 if ieA,

n

we get 1x® -x0_ s 1/n. It follows that x € w_. Hence w_=V
L X X 'x°
Replacing wy by wxo, Vx by on and r by 0 we obtain

o

PROPOSITION 2.6. Fér any zeroclass X, ?=Vx where wx°= {xew: d AeX x(K)O}.

PROPOSITION 2.7. (see [1] Proposition 4.10). If the zeroclass X is related to the
RSM S, then

o o o
o N om < lcgl® v (2.3)
w 0 mc |cS| €V, (2.4)
S and T_ have same value on ICsl. (2.5)

PROOF. (2.3) Let x € mxo n m. Then there exists a set A ¢ I such that A € X and

and x 2y 0. Since A €X, ve have x,¢ ICSIO. Since x€ m and S is an RSM, x-x, € |Cs|°.
Further x-x;_,e ¢ © |CS|° ([1] Proposition 4.9). Thus x = x*x, + X*Xy_, glcs|°.

Next, for any xe]CSIO and for any a > 0, ax{i. a< x|} s |x|e |CS|°. Thus
: i
o o :
X(4: o < lxil} € |CS| and so X{i: a< lxil} € ICSI equivalently {i: @ < lxil}ex.

(2.4) Obviously, w, Nm= (mxo ®<e>)Nm c (le|0 @ <e>)N m = |CS|ﬂ m. also,
o o
|Cs| = |Cg|" D<e>cV "~ B<e>=V,.

o

(2.5) Let xe|CS| . Then there exists re Rsuch that x-ts]CS|° © Cg~ so that S(x-r)=0

or S(x)=r. By (2.3), x-rsto. Therefore Tx(x)=r.
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PROPOSITION 2.8. If X1 and X2 are zeroclasses with x1 c Xz, titlen we. have

o o]
' c V.-, (2.6)
X x,
\Y c V., (2.7)
X X,
T =T . (2.8)
x2 Vx L3

PROOF. (2.6) Suppose that xeV ©. Then for any >0, {i: a<|xi|}e X, < X,
1

Therefore, for any >0, {i: ot<|xi|}€)(2 or x eV_ © For (2.7) and (2.8) let xe A and
2 1

T (x) = r. Then we have x-reV % Vv °. Thus x-reV % and soxe V. and T  (x)=

x] X x, X, x, x;

r=Tx2(x) .

PROPOSITION 2.9. (Bounded Consistency Theorem on Strong Convergence Fields). Let
S.:C, > R be an RSM related with the zeroclass X; and SZ:C + R be an RSM related with

1°%, 52
the zeroclass Xz Suppose that Xl c Xz and Csln mc Csz. Then we have:
|CS [°nme ICS [°nm, (2.9)
1 2
Icg In me|cg |n m, (2.10)
1 2
sl(lcsl| n m)= sz|(|c51|n m). (2.11)

o o
PROOF. (2.9) If x € |C. | N m, then |x|eC. n m, S (|x]|) =0, |x|e V, ,
S S 1 X,

(Proposition 2.7) and Ty (|x|) = 0. Since |x| e CgNmcC Sz(lxl) is defined. By
1 1

S td
2
the previous proposition |x|e V; Nmc on n m=_¢5x N m and by Proposition 2.7

1 2 2
w Ame |Cq |Amc & nm Thus we can find a sequence {x"} in |C; |nm such that
X, S2 Xy S2

n .

b S ]X] in (w,T,). Since S2 is an RSM, S2 is continuous. Thus Sz(xn) > Sz(lxl).

Since x" € IC | AmcV , T (xn)=S (xn). On the other hand |x| eV°ocy thus
S2 X" %y 2 3 x.’

= = =" = n = n =
0 Txl(x) sz(x). Hence we have 0 ’I'xz(x) li.mn sz(x ) limn Sz(x ) Sz(x).

Therefore x € [Cg [°.
(2.10) By (2.9), ~ |¢g |nm=(|Cg |[°@<e>) mc (Icg |°@<e>)n m = |Cg [nm.
1 1 2 2

(2.11) By Proposition 2.7 (2.5), 5] |CS lnm=7T_ ||C. [nmand S ||C |[nm=
1 XS 2

|
5y

szl |Csz|n m. By Proposition 2.8, we have T"llv"l = szlvxl. By (2.10) and the
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fact that |CS [nmec V, » we have the result.
1 1

COROLLARY 1. Let SI:CS -+ R and SZ:CS + R be RSMs defined on the same domain
1 2

and with same related zeroclass X. Then we have [Cg [N m = Icg |Nm
1 2

and Sll(lcsl|n m) = SZ'(|CSI| n m).

REMARK. Let F be the collection of all RSMs which are related to a fixed zero-
class X. Then Tx is a member of F and for any RSM S:CS+R in F, S and Tx have the same

values on the bounded strong convergence field associated with S.

Finally we look at RSMs on m.

PROPOSITION 2.10. Let S:CS*R be an RSM and let X=Xs. Suppose that Cs=m. Then
[c =V, Nm and $(x)=T, (x) for any xe|C_|.

PROOF. By Proposition 2.7, we have mxrlm C|Cs|C Vxn m. Let xe fo1m. Since

V, is the closure of w, in (w,Tw), we can find a sequence {x"} c |Cs| which converges
to x in (w,Tw). Suppose that xn-rn € |Cs|0 and S(x)=r. Since S(xn)=rn and S is

continuous, we have r »r in R. Thus |xn-rn|+|x-r| in (w,Tw). Note that xem. Thus

|x-r| is also in m, which is the domain of S. Since S is continuous and S(|xn-rn|)-0.

S(|x-r|)=0, which means xs[Cs|.
In the main Theorem of [3], Freedman proved (in the terminology of this paper)

the following:
THEOREM. If Y is a zeroclass, then x ¢ VYﬂ m if and only if for any two RSMs Sl'

S, on m with Y ¢ Xs , Yc st, Sl(x) = Sz(x).

1
Suppose that Si:m*R, Xfi-l,z) satisfy the hypothesis of Proposition 2.9, we show

2

that the above Theorem implies that the conclusion of Proposition 2.9 also holds for
S,»8,. Ifxe |csl| then x € v"1n m. It is clear that S, (x)=5,(x) since X, < X, .

3. RSMs WITH A RELATED ULTRAZEROCLASS.
In {2] we studied RSMs induced from matrices. For a regular matrix A, we define

the linear functional fA: CA*R by fA(x) = limnAx for any x € CA' The ordinary Bounded

Consistency Theorem (BCT) (see, e.g. [4]) says that for any regular matrices A,B with
CA Nmc CB’ fA(x)=fB(x) for any x € CA N m.

We can easily see that the BCT for strong convergence fields (Proposition 9) is
included in the ordinary BCT for matrices when the RSMs are induced from regular
matrices. Therefore we would like to find examples of summabilities such that the
bounded consistency in the strong convergence fields of these summabilities is not
implied by the matrix BCT.

DEFINITION 3.1. An ultrazeroclass on I is a zeroclass X such that there is no
zeroclass on I which is strictly finer than X.
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PROPOSITION 3.1. Let X be an ultrazeroclass on I. Then for any AEZI, AeX or I-AeX.

PROOF. Let F = {AeZI:I-AeX}. Then F is an ultrafilter. Thus for any AeZI, AeF or
I-AeF.

PROPOSITION 3.2. X is an ultrazeroclass if and only if mCVx.
PROOF. Suppose that X is an ultrazeroclass. Then for any AeZI, AeX or I-AeX,
equivalently, erVx or x(I_A)er, that is erVx or l-xA:Vx.

It follows that Xy € V.. Since V_ is linear space, m_ < V_. Since V_ is closed in
X X o X X
(w’Tm)’ 1;0 =mCcC Vx.

Suppose that X is not an ultrazeroclass, then there exists AsZI such that A¢X and
I-A¢X. Assume that Xp€V,+ Then there exists reR such that {i:u<|xA(i)-r|} e X for

any @>0.
If r=1, then {1:1/2<|XA(1)-r|} = I-AdX.
If r=0, then {i:1/2<|x,(i)-r|}=A¢X.
If r${0,1}, then {i:0.5min{|r|,[1-r|} <|x,(i)-r|}= I¢X.

This is a contradiction. Hence Xy € m-Vx.

PROPOSITION 3.3. If X is an ultrazeroclass then there does not exist a regular

matrix A such that f, is an RSM and |V | N m = Cy N m.

PROOF. Since X is an ultrazeroclass, m ¢ V_ and thus |Vx| Nm=V Nm=m On

the other hand, for any regular matrix A, m- CA z ¢

It follows from the above and Proposition 2.9 that the value of any RSM, S, on its
bounded strong convergence field is determined by any ultrazeroclass containing the

zeroclass related to S.
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