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ABSTRACT. In this paper we will deal with upper and lower bounds for (x + y)- n(x). In fact,

given q with 0 < q < I, for sufficiently large integers m,n such that m > n > qm > 2 we show that

x(m + n) n(m) < In(n)x(n)/In(m + I). Moreover, explicit bounds are obtained and a wider range is

given under the assumption of the Riemann hypothesis. Let m,n be positive integers with m > 2657.

Let < 0 < 2 and m > n > mt/. If the Riemann hypothesis holds, then

x(m + n) (m) < n/ln(m + 1) + /n + n ln(n + n)/4. (Here (x) the number of primes < x.)

KEY WORDS AND PHRASES. Primes. Small intervals, x(x + y) < re(x) + m(y).
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1. INTRODUCTION.

There are several accounts dealing with the validity of the conjecture that for x > and y > 1,

n(x + y) _< n(x) + n(y). (1.1)

For example [1], [2], [3] deal with (1.1), whereas in [4] there is a discussion of the conjecture of the

following form:

n(x + y) < n(x) + n(y) + cy/ln2(y). (1.2)

(Here we let x _> y >! and c > 0.) In fact, one of the two authors of [41 believes that (1.2) is true,

whereas the other one does not.

What is interesting to this author is a paper written by Hensley and Richards [5]; they proved that

if the prime k-tuple conjecture is true then (1.1) is false. Furthermore, assuming that the k-tuple con-

jecture is true they have shown that c > 0 such that for sufficiently large y and infinitely many

x we must have n(x + y)- (x)- x(y) > cy/ln2(y).

By using sophisticated techniques H.L. Montgomery and R.C. Vaughan [6] proved that if M > 0

and N > are integers then n(M + N)- n(M)_< 2N/In(N). Now D.R. Heath-Brown and H. lwaniec [7]

show that if 0 > 11/20 and x > x(0) then a-(x) n(x- y) > y/(212 In(x)) in the range x _< y < x/2. The

methods used in this paper axe elementary and give a different range of validity. The proofs of this

paper use the following definitions and results.
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n(x) the number of primes < x

Li(x) i dr/In(t) for x 2

Ls(m) l/In(k) for any integer rn > 2

n(x) Li(x) + O(xe ’f-) for x > 2, a > 0 (1.3)

n-I
Li(x) x(l + (k!/lnk(x)))/ln(x) + O(x/ln"+l(x)) for x > 2 (1.4)

k=l

n(m) Ls(m) + O(me rg5) for integer m _> 2. c > 0 (1.5)

Li(m) Ls(m) < C for some constant C (1.6)

If the Riemann hypothesis holds, then (1.7) is Irue

(x) Li(x) < x In(x) 8 for x > 2657

x(l + 1/(2 In(x))) In(x) < :(x) for 59 < x

(x) < x(l + 3/(2 In(x))) In(x) for < x

(1.7)

(1.8)

(1.9)

Now (1.3), (1.4) can be found in Ayoub [8], whereas (1.5), (1.6) are found in T. Estermann [9].

Furthermore, the paper written by L. Schoenfeld [10] gives us (1.7). Finally (1.8), (1.9) were proven

by J.B. Rosser and L. Schoenfeld [11 ].

2. THEOREMS, COROLLARIES AND THEIR PROOFS.

THEOREM 1. If 0<d<l and x,y are sufficiently large with xy>dx>2, then

n(x + y) n(x) In(y)n(y)/ln(x + y) < O(y/ln’t(y)) for any natural number n > 2.

PROOF. We have from (1.3) and (1.4) the following:

n(x) x/In(x) + x/ln2(x) + + (n-l)!x/ln*(x) + O(x/In"+t(x)). (2.1)

Now it is obvious that

t(x+y) (x) x/in(x+y) x/In(x) + !x/lntt+(x+y) k!x/lnk/l(x)
k=l

+ y + k=(k!/lnk(x+y)) / ln(x+y) + O x+y)/inn+(x+y) (2.2)

Given that x _> 2, y > 0 then for 0 _< k <_ n-1 we have

k!x Ink+(x+y) < k!x ln’/(x).

Hence (2.2) is replaced by

n(x+y) (x) < y + k.._t(k!/ln(x+y)) / ln(x+y) + O x+y)/ln(x+y)

For k > 1, we observe that lnk(x+y) > lnk(2y) > Ink(y). Replacing lnk(x+y), (2.3) now becomes

n(x+y) (x) < y + (k!/lnk(y)) / ln(x+y) + O x+yyln*+(y)

(2.3)

(2.4)
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Multiplying the first term on the right hand side of (2.4) by In(y)/ln(y) and using (2.1) we have replaced

(2.4) by the following:

(x+y) (x) ln(y)n(y)/in(x+y) < 0 [(x+y)/Inr’(y)]. (2.5)

It is obvious t a constant M > 0 such that for x + y sufficiently large the left hand side of (2.5) is

strictly less than

MCx+y)/ln"+t(y) (2.6)

Since x >_ y > dx > 2 for 0 < d < then

M(x+y)/ln"*l(y) < M(y/d + y)/ln"/(y) < M’(y/ln"/(y)). (2.7)

Hence by using (2.7) we conclude that

n(x+y)- n(x) ln(y)/t(y)/ln(x+y) < O(y/In"*(y)).

THEOREM 2. Let 0 < q < 1. If m, n are sufficiently large positivc integcrs satisfying

rn > n > qm > 2, then n(m+n) n(m) < n/In(re+l) + Bne-4-2i for B, a > 0.

PROOF. By using (1.5) we see that

(m+n)- (m) (l/In(k)) + O m+n)e 4--d (2.8)
k=m+!

It is obvious that we can replace (2.8) by

(m+n) n(m) n/ln(m+l) < O [(m+n)e-"(’ri-)]. (2.9)

Now ::! a constant M > 0 such that for m + n sufficiently large that the left hand side of (2.9) is strictly

less than

M(m+n)e-d’-,*.

Since m a n > qm > 2 and 0 < q -< then

M(m + n)e’’ < M(n/q + n)e (4-fiS Bne (4i.

Hence t(m + n) g(m) < n ln(m + 1) + Bne-’4i-c.
COROLLARY 1. Let 0 < q _< 1. If m,n are sufficiently large positive integers satisfying

m > n > qm > 2, then r(m + n) n(m) < ln(n)n(n)/ln(m + 1).

PROOF. By using the result of Theorem 2 with a slight modification we have

l(m + n) It(m) < nln(n)/(in(n)ln(m + 1)) + Bne (4. (2.10)

We rean’ange the terms in (2.1) so that one can give an upper bound to replace n/In(n). With M > 0,

we now incorporate an upper bound of n/In(n) into (2.10) to establish that

n(m+n) g(m) < In(n) (n) ((k-1)!n/lnk(n)) + Mn/lnt(n) /In(re+l) + Bne -.
Hence for n sufficiently large we have

n(m + n) n(m) < ln(n)n(n)/ln(m + 1).

THEOREM 3. Let 0 < q < 1. If m,n are sufficiently large positive integers satisfying

rn > n

_
qm > 2, then n(m + n) n(m) > n/ln(m + n) Ane- for a > 0 and A > 0. constant M we

have

r(m + n) (m) > (l/In(k)) M(m+n)e (4----) Mme-’4-’). (2.11)
irlm+l



444 G. GIORDANO

With a slight modification in (2.11) and using another constant M’ > 0 we see that

(m + n) n(m) > n/In(m + n) M’(m + n)e ---). (2.12)

By rearranging the terms in (2.12) this will now become

M’(m + n)e-5 > n/ln(m+n) + n(m) (m + n). (2.13)

Sinceman>qm>2and0<q_< then

M’(m + n (’---m) < M’(n/q + n)c l"(f- Ane’’.
Hence n(m + n)- n(m) > n/ln(m + n) Ane-’r).

COROLLARY 2. Let 0 < q _< 1, e > 0. If m,n arc sufficiently large positive integers satisfying

m >_ n > qm > 2, then m(m + n) m(m) > ln(nXn(n) (1 + e) n/In (n))/ln(m + n).

PROOF. By using the results of Theorem 3 with a slight modification we have

n(m + n)- n(m) > n ln(n)/(ln(n)ln(m + n)) Ane ’rff3. (2.14)

Using an argument similar to that found in Corollary 1, we rearrange the terms in (2.1) so that one can

give a lower bound to replace n/In(n). With D > 0, we now incorporate a lower bound of n/In(n) into

(2.14) to establish the following

m(m+n)-n(m) > In(n) (n)- ((k-l)!n/lnk(n)) Dn/lnt(n) / in(m + n) Ane-tn).

Hence for sufficiently large n

n(m + n) n(m) > In(n)(n(n) (1 + e)n/ln2(n))/In(m + n).

THEOREM 4. Let <_ 0 < 2. Let m,n be positive integers with m > 2657 and m >_ n m m. If

the Riemann hypothesis holds, then n(m + n) m) < n/ln(m + 1) + /n + n ln(n + n)/4m.

PROOF. By using the upper and lower bounds of (1.7) we have

n:(m + n) :(m) < Li(m + n) Li(m) +( In(m + n) + 4- In(m))/8. (2.15)

Noting that In(m + n) > 4- In(m) and using (1.6), then (2.15) will now become

(m + n) n(m) < (1 In(k)) + /m + n In(m + n) 4. (2.16)
kfm+l

It is obvious that we can replace (2.16) by

n(m + n) n(m) < n In(m + 1) + 4- + n ln(m + n)/4n.

Given that m > n > m1 for < 0 < 2 we may now conclude

m(m + n) re(m) < n/ln(m + 1) + ’’n + n In(n + n)/4m.

COROLLARY 3. Let < 0 < 2. Let m,n be positive integers with m >2657, n > 59, and

rn _> n > m. If the Riemann hypothesis holds, then

n(m+n)--n:(m) < In(n) [n:(n)-n/(2 ln2(n))]/ln(’m+l)+nSx/-n-b+nln(n%n)/4n.
PROOF. By using the result of Theorem 4 with a slight modification we have

n(m + n)- n(m) < nln(n)/(ln(m + 1)In(n)) + /n + n ln(n + n)/4n.

By rearranging (1.8) and incorporating it into (2.17) we achieve the following:

n(m+ n)-n(m)< In(n)[n(n)- n/(2 ln2(n))]/in(m+ 1)+ qn+n In(n+ n)/4n.

(2.17)
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THEOREM 5. Let _< 0 < 2. Let m,n be positive integers with rn > 2657 and rn > n a m1. If

the Riemann hypothesis holds then n(m + n) non) > n/In(m + n) 4"h-# + n ln(n + n)/4n.

PROOF. By using the upper and lower bounds of (1.7) we have

n(m + n) n(m) > Li(m + n) Li(m) (4- + n ln(m + n) + 4- ln(m))/Sn. (2.18)

Noting that ,/m + n in(m + n) > 4- In(m) and using’(l.6), then (2.18) will now become

n(m + n) t(m) > (l/In(k)) /m + n ln(m + n)/4n. (2.19)
k=m+l

It is obvious that we can replace (2.19) by

t(m + n)- n(m) > n/in(m + n)- r + n ln(m + n)/4n.

Given that m > n _> mTM for _< 0 < 2 we may conclude that

n(m + n) n(m) > n/ln(m + n)- 4n + n ln(n + n)/4n.

COROLLARY 4. Let < 0 < 2. Let m,n be positive integers with m > 2657 and m _> n _> mTM.
If the Riemann hypothesis holds, then

g(rn + n)- g(m) > In(n)(g(n)- 3n/(2 ln2(n)))/ln(m + n)- x/n + n ln(n + n)/4n.

PROOF. By using the result of Theorem 5 with a slight modification we have

g(m + n)- n(rn) > nln(n)/(ln(m + n)ln(n)) /n + n ln(n + n)/4. (2.20)

By rearranging (1.9) and incorporating into (2.20) we achieve the following

t(m + n)- n(m) > ln(n)(n(n)- 3n/(2 ln2(n)))/In(m + n)- /n + n ln(n + n)/4n.

3. FINAL COMMENTS.

feel that Theorem and the Corollaries and 3 are relevant to the disagreement between Erdbs

and Richards in their paper [4] dealing about whether the following conjecture is true.

t(x + y)- n(x)- n(y) < cy ln2(y). (3.1)

Of course, Theorem states that (3.1) is true provided that for 0 < d _< 1, x and y are sufficiently large

and x > y _> dx > 2. Under similar restrictions, Corollary also states that (3.1) is true. Moreover, if

we assume the conditions that are given in the Corollary 3 then we can give explicit bounds for which

(3. l) is correct.

As for the mysterious person who told P. Erdbs [12] that the "correct" conjecture should be

n(x + y) <_ n(x) + 2n(y/2), claim to have made some progress in this direction. From Rosser, Schoen-

feld and Yohe [13] we have n(2x) x(x) < n(x). If m 2 n then in(n) n(n)/ln(m + 1) < t(n) < 2t(n/’2).

Hence with the restrictions found in the Corollary we have n(m + n) _< x(m) + 2n(n/2).
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