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ABSTRACT. Let X be an abstract set and 2 a lattice of subsets of X. The notion
of Q being mildly normal or slightly normal is investigated. Also, the general
Wallman space with an alternate topology is investigated, and for Q not necessarily

disjunctive, an analogue of the Wallman space is constructed.

KEY WORDS AND PHRASES. Normal lattice, 0-1 valued measures, Wallman space, disjunctive
lattice, almost compact, almost countably compact.
1980 AMS SUBJECT CLASSIFICATION CODES. 28A60, 28A52.

1. INTRODUCTION.

In the first part of this paper, we consider lattices which satisfy conditions
weaker than normality; more precisely mildly normal and slightly normal lattices. We
give examples of such lattices, and then investigate the preservation of these

properties under lattice extension and restriction.

Next, we investigate spaces which are related to the general Wallman space.
First, instead of considering the customary topology on the Wallman space, we
introduce another topology and show how topological properties reflect strongly to the
underlying lattice. Then we consider the case of a lattice which is not necessarily
disjunctive and construct an associated Wallman type space. This work generalizes

that of Liu (see Section 5).

We adhere to standard lattice terminology that can be found, for example, in [1],
[2], (3], [4]1, I[5]. However, in section 2, we summarize the principal lattice
concepts and notations that will be used throughout the paper for the convenience of
the reader. We then precede to the consideration of mildly normal and slightly normal
lattices in section 3, and then to analogues of the general Wallman space in sections
4 and 5. We finally note that most of the results hold equally well for abstract
lattices.
2. DEFINITIONS AND NOTATIONS.

a) Let X be an abstract set and Q a lattice of subsets of X. We shall always
assume, without loss of generality for our purposes, that ¢, X € . The set whose

general element L' 1is the complement of an element L of 3 1is Arv .red by 0 ', s
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said to be complement generated iff, for every L of  there exists a sequence

{Ln }:=l in Q such that L =nn:l Lr'\' 2 is separating if, for any two elements

x #v of X, there exists an element L €  such that x ¢ L and y ¢ L. Q 1is '1‘2 if,
for any two elements x # y of X, there exists A,B ¢ 2 such that x ¢ A', y ¢ B'
and A' NB' = ¢, Q@ 1is said to be disjunctive iff, for every x eXand L € @,
if x ¢ L then there exists an L € Q, such that x ¢ I:\ and Lﬂﬁ = ¢. Q1is regular iff,
X L2 € Q such that
x eL!, LCL'2 and Li ﬂLé = b Q is normal iff, for any Ll’ Lze Q, if

A A L A ~
= cl cL! ALY = .
Llf'\L2 ¢ then there exists Ll’ L2 € Q such that L1 ll' L2 LZ and Ll l..2 ¢. Qis

lindelof iff, for every Lue Q a €A, if 2]‘,, = ¢ then for a countable subcollection

for every x € X and every L € @, i1f x f L then therec exists L

. n = 4. . . .
{L } of {La}, 0 L°1 ) Q is compact 1ff, for every L e @2, a €A, if

QL = ¢ then for some finite subcollection {qu} of {La}; RL = ¢. Next, consider

@ i=1
any two lattices n 92 of subsets of X. Ql is said to semi-separate 9.2 or for
abbreviation ({z1 S. srzz) iff, for every Lle Q and every Lze S'I.Z if L n L2= 0 then there
exists L e @ such that L.l and L r\L = ¢ Q is said to separate Q, if for

2 1
any LZ’ t e q if L nL = ¢ there exist L L € {ll such that L cL L Cl-l and

s s
Llﬂ?.1 '8 We :enofe by 12 1L set wt:oselgenetal element lzs t:l:e ijltersectinn nf
arbitrary subsets of @ . b) Let A b a.y algebra of subsets of X. A measure on A is
defined to be a function, y from A ¢ R such that p is bounded and finitely
additive. The algebra of subsets of X generated by Q is denoted by A(f). If x ¢ X,
then u 1is the measure concentrated at x so u () = {(l.’ :g ::: where A ¢ A(3).

The set whose general element is a measure on A(Q) is denoted M(Q). Note that, since
every element of M(Q) is equal to the difference of nonnegative elements of M(Q),,
without loss of generality, we may work excliv:ively with nonnegative elements of M(Q).
Let y e M(Q), p is @ regular if for any A e A(Q); u(A) = sup {u(L);LCA, L ¢ Q}.

The set whose general element is an element of M(Q) which 1is @~ regular is denoted
by M.R(n). An element p e M(Q) is o-smooth on @, if Lne Q n=1,2,... and Ln+¢ then
u(Ln) + 0. The set whose general element is an element of M(Q) whi<h is o¢-smooth

on Q is denoted by MO(Q). We say that p is o-smooth on A(Q) if Ane A(Q), n = 1,2...
and A +¢ then u(An) + 0. The set whose general element is an element of M(Q) which
o-smooth on A(Q) is denoted by MO(Q). Note that if eMR(Q), then eMrg( Q) iff

o eMa(n).I(Q), IR(Q),IO(Q). 1%, Ig(n) are the subsets of the corresponding M's
consisting of the non-trivial zero—one valued measures. For p € M(Q), the support
of y, S(u) =N{L € @ p(L) = u(X)}. L is replete iff, whenever yu ¢ Ig( Q) then

S(u) # ¢ A premeasure on Q is defined to be a function = from Q to {0,1} such that
n(¢) = 0, w(A) < m(B) for every ACB where A,B ¢ Q and if n(A) = n(B) = 1 then

n(ANB) = 1. 1(Q) denotes the set of all premeasures on Q. c) As an immediate
consequence of Zorn's Lemma, we have, for every p e I(Q), there exists an element

vel (Q) such that y < von Qor simply (u < WQ)). Also, for any two lattices

QI,QZ of subsets of X, if Q cnz, then for every y ¢ IR(n ), there exists a

vel (02) such that le( )= u and such that a vis unique 1if nl separates 92

Moreover, @ is normal iff, for p e I(Q), u < vl(n), u < vz(n) where DEAL IR(Q) then
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v = vy Q 18 regular iff, for any Hpouy € I(9Q); uo< uz(n) then S(ul) = S(uz)o The
result we IR(Q) iff Q 1s disjunctive leads us to the Wallman Topology which 1is
obtained by taking the totality of all W(L) = {y ¢ IR(Q); w(L) = 1 for L ¢ Q} as a
base for the closed sets on I (q). For a disjunctive g, 1p(Q) with the W(Q) of closed

sets is a compact T, space and will be T2 1ff Q is normal and is called the general

Wallman space associ:ted with X and 9 . Also, for a disjunctive Q and A,B £ A(Q),

W(A) is a lattice with respect to union and intersection. Moreover,W(A') = (W(A))',
WA(Q)) =AW(R)), W(A) = W(B) iff A = B and W(A)c W(B) iff AcB. Now, we note that,
if Q is disjunctive so is W(Q), and in addition to each y ¢ M(Q), there exists a

i e M(W(Q)) defined by u(A) = M(W(A)) for all A ¢ A(Q) such that the map yu » uis

one-to-one and onto; moreover u & M () iff ﬁ e M (W(Q)).

3. ON NORMAL LATTICES.

In this section, we elaborate on the notion of a normal lattice, investigate
lattices which satisfy weaker conditions, and discuss their interrelations under the
extension and restriction properties. Throughout this section Q, Ql’ and nz will
denote lattices of subsets of the set X. Note that, for Lle Q; i=1,2,3; Q is8 normal
iff LICL'ULé, then L1 = AuBl, ACLZ, BCL3, l,B € R

THEOREM 3.1. Let Q be normal, p € I(Q) and G = {L'¢ n'*LC L', u(L) =1, Len}
then, G is a prime Q'-filter.

PROOF. Clearly, G is an '~ filter since ¢ {G, u(i nL ) = 1 and if Lle G;L!CL}

172
then Lé e G. In- addition, if L'ULée G, then LC LiULé and by the normlity of Q,
L= L UL with 1 = u(L) < u(L ) + u(L ) then either u(L ) = 1or u(L ) =1 and so

172
either L!e G or Lze G. Thus, G is a prime Q' - filter.

THEOIIQEH 3.2. Suppose QlC 92 and Ql separates 02. Then, Ql is normal iff 02 is
normal.

PROOF. (i) Suppose nl is normal then by the separation. It is clear that nz is
normal. (ii1) Suppose 02 is nunormal. Let u ¢ I(nl). uo< v vz(nl),vl,v IR(QI)’
Extend Vs Vg to )‘l’ Aze IR(QZ) and pto 1 ¢ I(szz). Suppose there exists an

02, ‘l'(ﬂz) = 1, but A (L ) = 0, then A (LY) = 1 and so there exists Lze 92, LZCL2
A (LZ) = 1. By the separation, there exisca Ll’ Lle R 1 DLZ, L DL2 Consequently,

A (L ) = 1 but r(L ) = 1 then AI(L ) = 1 which is a contradiction. Therefore,
T < Al(nz) and similarly T < Az(nz). Thus, by the normality of nz Al = A2 then
Vi =V and so nl is normal.

DEFINITION 3.1. Q is said to be mildly normal, if for all u € Io(ﬂ), there exists
a unique v e I(Q); u < wQ).

DEFINITION 3.2. Q is said to be almost countably compact, if for all
ue IR(Q'), e Ia(ﬂ).

DEFINITION 3.3. Q is said to be prime replete, if for all y € Io( ), S(u) # ¢

THEOREM 3.3. If Q is regular and prime replete, then Q is mildly normal.

PROOF. If Q is not mildly normal, then there exists u € Io(n)’ v * weE IR(Q) and
M < vl(ﬂ), < vz(sz). Then, there exists Ll' Lze Qs Llf'\l.2 = ¢. vl(Ll) - vz(Lz) = 1
and vl(Lz) - vz(Ll) = 0. But since Q is regular, S(yu) = S(ul)C I.l and
S(uw) = s(vz)CLzo Then, S(u)C(LlﬁLZ) = ¢ and so S(u) = ¢ which is a contradiction
since Q is prime replete. Thus, Q must be mildly normal.
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THEOREM 3.4. 1If q is regular aod lindelof, thea 4 is mildly unormal,
PROOF, If o is not mlldly nowmal, then by the prool of Theorem 3.3,
s(u)C,L M1, ) = ¢. Moruover, j = FJ Lu = S(p) = 8( vl) = 5(v,) with u(L“) « 1 and
» -

- S f! - - : -
YLt = X Since 95 lindelof 1_'11,;1 X and iQIL% b L“;, % 1=1,2,000 (may assume
L"i”' but “(“1) = ] for all { which {8 a contradiction since y ¢ Ia(ﬂ).

Thus, Q muat be mildly normal.
THEOREM 3,5, If ;) is almost countably compact and wildly normal, then  is normal.
PROOF. Suppose @ is almost conutably compact, and u ¢ I(q)s Then y < v e I,(0')
on ', and 80 v < w(Q); v & 10(9). If 4 e L(R) and u « o), then v ¢ ¢(Q),
v E Id(n). Since 18 mildly normal the rest of the proot is obvious.
THEOREM 3.6, Suppote 9, C 2, and 1 soparates @,. Then, 2, ts mildly normal if
nl is mildly aormal.
PROOF. Suppose @, is nmildly normal. Let y « [omZ)’ u < “1(“2)' u < \;2(02).

vir vy & T(a), then € v [€R), u « VZ'(’\ll); vilovyle TeCa) and w e I(2,), hence
vl' - "zl 3ince nl is mildly wormal, Thus v vy glnce nl separates ) and so nz is

mildly normal.

DEFINITION 3.4. 92 i3 said to be ol --conntably bounded, {f given Bne ) Bn+¢,
there exists an A“e Q¢ Anu and Bn € An'

In the next theorem, we will sev when a partial converse of the theorem 3.6 1is
true.

THEOREM 3.7. Suppose N veparates i, and S is 3, -countably bounded, then if
iy 18 mildly normal so is 8

PROOF, Suppose Ry is mildly normal and nl separates “2' Let u ¢ Iq(nl) and
o< vl(nl). < vz(nl) where vprvy b Ik(nl)' Extend y to 1t & 1(92). By separation,
) and vy extend untquely to 4 aad ) respectively, where G0 Gyt IR(nz). and
Tt 8 r,l.;z(l.z). Let B“M. Bnr, Ry Sinee 92 is ﬂl-muntably bounded, there exists
Anw, Bn‘—'An. A eq. Then 1(Bu) <A - u(An) = 0 for some n. Then t ¢ Io(nz).
Since s is mildly normal, AR and hence v * vy S0 @ is mildly normal.

DEFINLTION 3.5. @ is sald tu be countably paracompact if, whenever An+¢, Anen.
there exists Bne ﬁ;AnCBr'l and BA& b

DEFINLTION 3.6. & is sald to be slightly normal, 1if for all eIo(n'). there
exists a unique v ¢ IR(Q): o< WW)

THEOREM 3.8, If O is regular aud lindelof, then Q is slightly normal.

PROOF. Suppose f is not slightly normal. Let y eI (n ) ow < v (D), u < W (D)
where v, v ()3 v * vy Then S(p) = ¢. Let g(L) = Sup fny; Lc L; L e Q
Then, ¢ is a premeasure, t.e. ¢ e N(Q). Moreover, S(u) = S(g) since @ 1§ regular.
Also ¢ ¢ “o‘“” and since § 1s lindelof, S$(z) # ¢ then 8(u) ¢ ¢ which is a contradic-
tion. Thus, { must be slightly normal.

THEOREM 3,9, Suppose ¥ scparates ii,. 1f 2y is slightly normal, then nz is
slightly normal.

PROOF. Let y ¢ 10(95); WS v (y)s € vy (ay) where vy Ve Ig(ay), then by

separation ”""l(ﬂl)’ ulwzl(ﬂl); ul © Io(sli) and "1|' v2| € Ik(nl). Therefore,
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vll = v2| since Q is slightly normal and so v, = v, by separation and hence 92 is

1 2
slightly normal.

LEMMA 3.1. If Q is complement generated, then @ is slightly normal.
PROOF. If Q is complement generated, then IO(Q')CIR(Q), that is, if py ¢ Io( Q')
there exists a unique v ¢ IR(Q); p < Q). Thus, Q is slightly normal.

In the next theorem, we will see when a partial converse of theorem 3.9 is true.

THEOREM 3.10. Suppose . separates e If @ is mildly normal and countably

1 2

paracompact then @ is slightly normal.

1
). .
PROOF. Let u eI (21); u < v(Q), u < v (2)3v5 v,

1
[ 1(92). Consider an, Bne QZ then Bnc Anw, Ane o since 2, is countably

€ IR(QI). Extend p to

paracompact and , separates 92 therefore nz is Ql -countably paracompact and

1
1y = ' [
;(Bn) < ;(An) u(An) + 0. Since y € Io(nl), then ¢ ¢ Io(szz). Now extend
Vpe Yy to 1, T, € IR(QZ) then ¢ < rl(Qz), r < tz(nz)by separation and so e
since Q is mildly normal. Thus v =V and so Ql is slightly normal.
REMARK 3.1. It is not difficult to give similar conditions (as in theorem 3.10)

to obtain the other partial converse of theorem 3.9.

4. ON SPACES RELATED TO THE GENERAL WALLMAN SPACE.

We recall from section 2 that for an arbitrary lattice Q of subsets of

X, I.(Q) with the topology tH(Q) of the closed set, is a compact T space. Also,

1
if Q is disjunctive and separating then X can be embedded in IR(Q). Moreover, if Q is

disjunctive, so is W(Q), and IR(Q) with the topology W(Q) is T, iff Q is normal. In

this section, we consider alternate topologies on IR(Q). 2

THEOREM 4.1. Consider § = 1 W(Q') for a base of closed sets W(L');L'e Q Then
IR( Q) with the topology § is T2.

PROOF. If u # Myt Upsky € IR(Q) then there exists Ll,Lze S'z;LlﬁL2 = ¢, "l(Ll) =1
and y (L,) =0, Hy(Ly) = 1 and py(L;) = 0. Therefore y e W(L), uzd W(L,) and
u, € W(Lz), ulé W(LZ); W(Ll) and W(LZ) are open sets. Thus, w(Ll)nw(LZ) = ¢ and
consequently, IR( Q) with 6 is T2.

DEFINITION 4.1. Q is said to be almost compact, if for all y ¢ IR(Q'), S(p) # ¢

THEOREM 4.2. The lattice W(Q') is almost compact.

PROOF., Let ) ¢ IRH((Q')') = IR(W(Q)) then )\ = ﬁ, u e IR(Q) (section 2) and so
S(ﬁ) = NW(L) with 1 = 'ﬁ(W(L)) = u(L). Thus, py e W(L), u ¢ S(;) on W(Q) and so IR(Q)
with W(Q') is almost compact.

REMARK 4.1. We note (1) S()) = S(Iﬁ) = {p}. (i1) If @ is disjunctive, it 1is then
clear that for any L € @, L = ﬁL;, LCL:’; La € QU

THEOREM 4.3. The sets of W(Q) are clopen in the § topology.

PROOF. Since W(L) is disjunctive then by remark 4.2 (ii) for any L ¢ @,
W(L) =f"w(L('x), Ww(L)C w’(La)’Lu € 218 closed in the §-topology. But, W(L) is also
open in &-topology since W(L) = (W(L')'). Thus, the sets of W(Q) are closed in the

§—-topology.
THEOREM 4.4, IR(Q) with the &-topology 1is compact iff Q is an algebra.
PROOF. (i) Suppose IR(Q) with 6§ 1s compact. Thus, W(Q') is a compact lattice

and so 1s W(Q'). Let z ¢ I(W(Q')). Then S(g) # ¢ on W(Q'), g = X A € I(Q).
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Let p €S(g), u e IR(Q) then 1 = g(W(L')) 1iff 3(W(L')) =1 iff AL') = 1.
Now A(L') = 1., Then ¢(W(L')) =1 then p ¢ W(L') then u(L') = 1. Thus, X < p(Q') and
hence u < A(L). But y ¢ I;(L) then p = A, Thus § = X and hence I(W(Q))
= I(W(a')) = L (W(D). Thus, @ = @' [2]. (i1) The converse is clear.

THEOREM 4.5. § = W(Q) iff Q is an algebra.

PROOF. (i) Since the sets W(Q) are clopen by Theorem 4.3 then W(Q) e § and so
W(Q) € 6. Now, if & = 7W(Q) then since W(Q) is compact so 1is §and so Q1is an

algebra by theorem 4.4. (i1) The converse is clear.

In the next theorem, we give another equivalent condition for @ to be an algebra.
THEOREM 4.6. @ is an algebra iff W(Q') is a disjunctive lattice in IR(Q).
PROOF. (i) Suppose Q@ is an algebra, then Ip( Q = I(Q). Let p € IR(S'Z);

uw ¢W(L"), L eQ Then p(L') =0, 1 = p(L) = pu((L')'). L' ¢ @ and W(L')NW((L"))"'

= ¢ Thus, W(Q') is disjunctive. (ii) Suppose W(Q') is disjunctive. Let

u € I(Q) then there exists a v e I (2); u < W Q). For y # v, there exists

Le@ pl) =0, L) = 1 then v ¢ W(L'). Hence, by disjunctiveness

veWd)', Legand ¢ =w@nwwy =w@ n L) = WL uL)'). Hence,

?..UL‘= X, L'f\f.' = ¢ and so L'Ct, but since u(f.) =1 and v ew(i)', v(f.-) =0

which is a contradiction, since p < v. Thus, IR(Q) = I(Q), and so Q is an algebra.

5. ON NON-DISJUNCTIVE LATTICES.

We next consider the case where Q is not necessarily disjunctive. We begin, by
introducing the notion of an Q-convergent measure and some related results and then
proceed to the construction of an analogue of the Wallman space.

DEFINITION 5.1. yu e I(Q) is said to be Q-convergent if there exists an x ¢ X such
that ' < u().

THEOREM 5.1. u is Q-convergent 1iff S(u) # ¢ on @', for all u e I(Q).

PROOF. (i) Suppose p is Q-convergent. Then there exists x € X; u < u(Q) and so

u < ux(n'). Moreover x ¢ S(ux)c S(u) on Q'. Thus, S(u) # ¢ on Q'. (ii)
Suppose S(y) # $on Q' for p € I(Q). Let x ¢ S(u) on Q'. Then, u < ux(n') and so
w < u(). Thus y is Q-convergent.
THEOREM 5.2. Suppose u < uz(Q), for all Uy My € I(Q). Then
a) If u is Q-convergent so is 92.
b) If Q' is regular and u, is Q-convergent then uy is Q-convergent.
PROOF. a) Suppose uy is Q-convergent, then w < ul(n) for some x, but
uy < uz(rz) then u, < uz(ﬂ) and so u, is Q-convergent. b) Suppose My is
Q-convergent, then W < uz(ﬂ) for some x and so u, < ux(n') and X € S(u2) on Q'
but w < uz(n) then uy < ul(n') and since Q' is regular x ¢ S("z) = S(ul) on Q'. Thus,
S(“l) # ¢ on Q' and so uy is @-counvergent.

THEOREM 5.3. Suppose Q' is T, and y is Q-convergent where y ¢ I(Q). Then, there

2

exists a unique x ¢ X: w < w(a").
PROOF. If Q' is T2 1’

y € LZ; Llr\L2 = ¢ and ux(Ll) =1, ux(LZ) = 1. Now, if u < u(Q) and My < ()

then u(Ll) = u(LZ) =1 but L N L2 = ¢ which 1s a contradiction and so the desired

and if x#y then there exists L L2 €N X € Ll'

1
result is true.
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DEFINITION 5.2. Q is said to be weakly compact if for all y ¢ IR(Q). u is
Q-convergent.

DEFINITION 5.3. Q is said to be almost compact if for any y ¢ IR(Q'). S(w) # ¢
on Q.

THEOREM 5.4. @ is weakly compact iff Q' is almost compact.

PROOF. (i) Let p ¢ IR(Q) then since Q is weakly compact, there exists an x ¢ X
such that " < u(Q) and S(p) # ¢ on Q'. Thus, Q' is almost compact. (ii) Let
B e IR(Q) then S(u) # ¢ on Q' since Q is almost compact. Let x e S(y) on Q'
then p < ux(Q'), w < u(Q) and so Q is weakly compact.

Now, note that a topological space X is absolutely closed (generalized absolutely
closed) iff the lattice © of open sets is TZ(TO) and weakly compact. Next, let Q be a
lattice of subsets of X and define U(Q) = {ULa; Lu e ).

THEOREM 5.5. a) If nlcﬂz and QZ is weakly compact, then Ql is weakly compact.
b) Suppose Qlc QZCU(QI) and 92 seml-separates 92. Then, if ﬂl is weakly compact,

ﬂz is weakly compact.

PROOF. a) Extend y ¢ IR(QI) to v ¢ IR(Qz). Since 92 is weakly compact, there
exists an x; w < \;(92). w < u(nl) and so 9 is weakly compact. b) Let v e IR(RZ).
Then since nls.sﬂz, u € IR(QI) where y 18 the restriction of v to A(Ll). Thus, there
exists an x ¢ X such that e < u(nl). Now, suppose L2 €9 and "x(LZ) =1 then x € X
X e LZ’ but L2 =y Lla,Llasﬂ;thenx is on some Lla and so "x(Lla) = 1 for some Lla
and moreover u(Lla) = 1 since N < u(ﬂl), but Llac L2 then v(LZ) =1 and so
< \J(Qz). Thus, @, is weakly compact.

2
REMARK 5.1. Let X be a topological space and © the collection of open sets.

Yy

Then, by Theorem 5.4, © is weakly compact iff F = @' is almost compact.

Now consider X. Suppose Q is non—disjunctive and define I = {u :x e X} U

{fuel (n). u 1s not Q-convergent} and W(A) = {p e I; u(Ad) =1, A g A(Q)}. We also

assume QisT,so X, ¥y ¢ Xand x # y implies u #py. N

THEOREM 5.6. For A, B ¢ A(Q), we have: a) A =8B 1ff W(A) = W(B), b) W(AU B) =
WAy u 6By, o) Ha nB) = Wa)n W(B), a) WA = (WA, e) WCAGR) = AGR(Q).
PROOF. a) (i) If A = B, then, clearly G(A) = a(B). (1i) If A # B, then say
ANB' # ¢, let x eAﬂB' then w (AﬂB’) = 1, e e?and so ux(A) =1, ux(B) = 0 which
implies that y eW(A), u 4W(B) and W(A) # W(B) b), ¢), d) and e) are not difficult

to show and are omitted.

Now consider y ¢ I(Q) and define ‘u\ € I(G(Q)) to be ﬁ(G(A)) = u(Aa), A e A(Q).
Then, one can easily note that n -»ﬁ is 1-1 and onto from I(Q) to I(ﬁ( Q)), and
moreover yu e IR(Q) iff u € lR(W(Q))

THEOREM 5.7. W( Q) 1s weakly compact and T .

PROOF. a)Let ﬁ el (W(Q)) then p e I (n). If u 18 Q-convergent then b < w(Q)
implies that G < u(W(ﬂ)) Note that for A e A(Q),

A 1if x e A A
u (a) = ﬁx(W(A)) = and e W(A) 1iff y (A) = 1. Thus, }i 1is the measure
01if x ¢ A
concentrated at w and so u is W(Q)—convergent. If u is not Q—convergent then
S(u) ﬂW(L) with u(W(L)) =1 = y(L), hence u € W(L), wel, ue S(u) and u is the

measure concentrated at j, and consequently W( Q) is weakly compact. b) Let o
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by ei uy + “’2 then there exists an L ¢ f such that say, ul(L) =1, uz(L) = 0.
Therefore u eW(L), uy € W(L') and so w(L) is T .
THEOREM 5.8. If Q = U(Q) then W(Q) separates U(W(Q))

= = = (UL
PROOF. Suppose (i) (Uuw(La) n (%W(LB)) ¢. Let A (L&La) e B (B B) € Q

Since @ = U(Q) then (UW(L )) CW(A) and (Uw(L )CW(B) If ANB # ¢ then L ﬂLB s
for some a, B. Let x € L ﬂLB then u e I and u eW(L ) and Hye eW(L ) which
contradicts (i). Thus, ANB = ¢, H(A) ﬂW(B) ¢» and the desired result is now clear.

Now, we note that if Q = U(Q) then I with 0 = ﬁ(n) is generalized absolutely
closed and is absolutely closed if @' is T2 Thus, if we consider X and let
Q= U(Q = e and TZ’ then I 0 is an absolute closure of X since one can easily
observe that X = W(X)

REMARK. An analogous construction can now be done for I° Wo Where
I0 = {u :x e X} U{u € Ia(n) u is not Q—convergent} and WO(A) = {y € 1°,
u(A) = 1, A ¢ A(Q) and one can show that I 9(q) is weakly replete. @ is weakly replete
if for any p e Ig(n), W is Q@-convergent. We note that the constructions here

generalize the work of Lui [6].
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