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ABSTRACT. In continuing from previous papers, where we studied the existence and
uniqueness of the global solution and its asymptotic behavior as time t goes to
infinity, we now search for a time-periodic weak solution u(t) for the equation whose

weak formulation in a Hilbert space H is
d
i (u',v) + 8(u',v) + a b(u,v) + Ba(u,v) + (G(u),v) = (h,v)

where: ' = d/dt;(,) is the inner product in H; b(u,v), a(u,v) are given forms on
subspaces UcW, respectively, of H; § > 0, « » 0, B > 0 are constants and a + 8 >0; G
is the Gateaux derivative of a convex functional J: VcH » [0,®) for V = U,
when o > 0 and V = W when @ = 0, hence 8 > 0; v is a test function in V; h is a given

function of t with values in H.

Application is given to nonlinear initial-boundary value problems in a bounded

domain of R™.
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1. INTRODUCTION.

In continuation of Brito [1], [2], where we studied existence and uniqueness of
the global solution and its asymptotic behavior as time t goes to infinity, “we now
search for a time-periodic weak solution u(t), i.e., such that

u(0) = u(T); u'(0) = u'(T)

for the equation whose weak formulation in a Hilbert space H is

ﬁ——(u',v) + §(u',v) + ab(u,v) + Ba(u,v) + (G(u),v) = (h,v) (1.1)
where

= d/dt; (,) is the inner product in H; b(u,v), a(u,v)
are given forms on subspaces U c W, respectively, of H; § > 0, a >0, B > 0 are
constants and a + B>0; G is the Gateaux derivative of a convex functional
J: VcH » [0,»), for V = U, when a > 0, and V = W, when a = 0, hence B > 0; v is a

test function in V; h is a given function of t with values in H.
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Application is given to initial-boundary value problems in a bhounded domain & of
R™ for the following equations, in which p > 2 depends on n, a > 0, 8 >0, k > 0:

u" + Su' - Au + Iulp_zu = h (1.2)

" ] 2 p-z

u" + Su' + ad"u - BAu + u + lul u=h (1.3)

" A 2 2

u" + Su' + ah’u - {B+k [ (Vu)delau = h (1.4)
Q

and the generalization of (1.4) in a Hilbert space H

u" + &u + aAzu + BAu + M(IA1/2|2)AU = h (1.5)

for A a linear operator in H, M a real function.

For related problems, we refer to Biroli [3], Lovicar [4]; see also references in

Brito [1].

2. PRELIMINARIES.

We consider three Hilbert spaces UcCWcH each continuously embedded and dense in

the following.
We assume the injection W<H compact.
Let (,) denote the inner product in H and l ‘ its norm.

Let a(u,v) and b(u,v) be two continuous, symmetric, bilinear forms in W and U,
respectively. We shall write a(v) for a(v,v), b(v) for b(v,v). We shall assume
that (a(v))l/2 defines in W a norm equivalent to the norm of W and, similarly, that

O R

defines in U a norm equivalent to the norm of U.
Let ¢ > 0 be such that
c|v|2 < a(v) for v in W. (2.1)

Let A be a linear operator in H, with domain D(A) such that UcD(A)c W and
a(u,v) = (Au,v) for u in U, vin W
b(u,v) = (Au, Av) for u,v in U

§ >0, a >0, B >0 are constants and a + 8 > 0.

Assume
V=Uif «a > 0, B > 0;
V=Wif a=0, B8 > 0.
Consider a convex functional
J: V> [0,») such that J(0) = O.

Let G: V+ H be the Gateaux derivative of J. We assume G 1is Gateaux
differentiable, locally Lipschitz and G(0) = O.

With these hypothesis, we have, from [2] Theorem 3.1 and [l1] Lemma 2.1,
respectively
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THEOREM 2.1. Given ug in V, u; in H, h in LZ(O,T;H), there is a unique function u
such that
a) u e Lm(O,T;V); u' € LQ(O,T;H); G(u) € Lm(O,T;H)
b) for all v in V, u satisfies,
Squr,v) 4 8,y + ablu,v) + Balu,v) + (G(0),v) = (hv)  (2.2)

c) u satisfies the initial conditions
u(0) = ug; u'(0) = uy (2.3)

d) u satisfies the energy equation
t 2 t
E(t) + & [ |u'(s)|“ds = E(0) + [ (h(s),u'(s))ds 2.4)
0 0

where
26(e) = u'(0)]% + ab(u(e)) + Balu(t)) + 21(u(t)).
THEOREM 2.2. In the conditions of Theorem 2.1, the map S: VxH - VxH given by
§Cug,u;) = (u(L),u'(e))
is, for fixed t, (sequentially) weakly continuous (i.e., if ¢n > ¢ weasly in V x H,
then s(¢n) > s(¢) weakly in V x H).

We shall, further, assume that
2J(v) - (G(v),v) <0 for v in V. (2.5)

3. EXISTENCE OF TIME-PERIODIC WEAK SOLUTIONS.

We shall refer to u(t) in the conditions of Theorem .1 as the solution of (2.2)
with initial conditions (uo,ul) in vV x H, given by (2.3).
THEOREM 3.1. 1f h € C([0,T];H) there is at least one solution of (2.2) with
initial condition in V <« H such that
u(0) = u(T); u'(0) = a'(T). (3.1)
PROOF. Take v = u(t) in (2.2 multiplied by comstant 2y > 0 and add it to the
energy equation (2.4) differentiated ani multiplied by 2, to obtain, with (2.5),

E%—{lu'|£ + ab(u) + ga(u) + 2J(u) + 2y(u,u')} +
+ 2ygfur|? + ab(u) + Ba(e) + 23(u) + 2v(u,u)} ¢
+ 20829 ([u]? + ¥t )] € 2(h,ut + ).

For 0 < y < 8/2, let

w(t) = Jur + yu|? + ablu) + Ba(u) + 23(w). (3.2)
Then we have

w'(t) + 2yw(t) < 2(h,u’ + yu) = 2(8-2y)(u',u’ + ya) +

+ v (—1-‘:~—|u|2 + 293 |u)
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The right-hand side of the above inequality is equal to
2(h,u' + yu) + Z(qu - (8§ - 2y)u',u" + yu) =
= 2(h,u’ + yu) - 2(§ - 2y)(u' + yu,u' + yu) + 2(§ -~ y)(yu,u' + yu).

Therefore

2.2 2
(8 - Y |u]”
N [ B . AN, A - .
w'(t) + 2yw(t) < 2(h,u' + yu) + 38 = 27) . (3.3)
Observing (2.1) and (3.2), we obtain
w(t) > 'u' + Yulz + e Iulz, with ¢ = acz + Bc > 0. (3.4)
By assumption, B + a > 0.
We choose 0 < y < §/2 so that
2
et O 10
P T (8=2yy < 2 (3.5)

This is possible, because it amounts to choosing y so that
B(Y) = (6 - )2y -4 e (§-2y) <0

and lim B(y) = =4 ¢ § < 0.
0
It follows from (3.3), with (3.4), (3.5), that

W) + 2yw(e) < 2|h(e)] Jult) + pu(t).
Hence for 0 < t < T,
w(t) < F(t) (3.6)
where
-2yt t 2ys -
F(e) = e Y (w(0) + [ e“"®(2|n|/w + pwlds}. (3.7)
0

Therefore, because of (3.6), we have
F'(t) < (p - 2V)F(t) + 2|h(e)|/F(L).

Let F(t) = r, with

r > max -glh&sll .

2y - p
0<Kt<T

Then F'(t) < 0. It follows, using (3.6), (3.7), that if w(0) < r then w(t) < r,
for 0 <t <T.
Consider
2
K = {(uo,ul) e V x H; Iul + Yuol + ab(uo) 3 Ba(uo) + 2J(u0) <r}.
We proved that the map S: V x H+» V x H given by

S(ug,u;) = (u(T), u'(T))
takes K into K.

It is easy to check that K is a nonempty, closed, bounded, convex subset
of V x H.

The fact that S has a fixed point, i.e., that (3.1) holds for some (“0'“1) € K,

now follows from Theorem 2.2 as a consequence of the well-known fixed point Theorem:
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Let B be a separabie, reflexive Banach space, K a nonempty closed, bounded convex
subset of B, and S a (sequentially) weakly continuous operator of K into K. Then §

has at least one fixed point in K.

4. APPLICATIONS.

We devote this Section to applications of Theorem 3.1 involving initial-boundary
value problems in a bounded domain Q with regular boundary in R™ for equations (1.2),
(1.3), (1.4).

In what follows
H = LZ(Q), W= Hé(n), and

aCu,v) = (Vu,W) = f YuWwdQ.
Q
Let
A = -4, D(A) = Hé(ﬂ) n Hz(n),

blu,v) = (Bu,&v), U = Hy(@) N wia).

Note that similar results are obtained if we suppose U = Hg(ﬂ).

For &8 > 0, h € C([0,T]; H), we have
EXAMPLE 4.1. Let a=0,B =1, V=W= Hé(n) and

J(u) = %-|u|pr(n) for u in V

where 2 < p € 2(n-1)/(n~-2) if n > 2; p > 2 if n < 2. Then J(u) is well-defined in V
and
G(u) = Iulp-'2 u € He

We refer to {2}, example 5.1, for the proof. 1t is clear that (2.5) holds. Therefore
Theorem 3.1 ensures existence of a T-periodic weak solution of
u" + 6u' - Au + |u'p_2u = h.
EXAMPLE 4.2. For a >0, 8 20, V=1U = Hé(ﬂ)nﬂz(ﬂ) (or H(z)(ﬂ)), let

J(u) = l|u|p + %1u|2 2 for u in V
PTLPea) L°(2)
where
2<p <2(n=-2)/n-4) if n > 4; p > 2 if n < 4.

Then J(u) is well-defined in V and

G(u) = |u|p_2u + u € H.
We refer to [2], example 5.2, for the proof. It is clear that (2.5) holds. Then
Theorem 3.1 ensures existence of a T-periodic weak solution of

u" + Su' + aAzu - BAu + u + 'u'p—zu = h.
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B}
EXAMPLE. 4.3. For a >0, 8 20, k>0, V= U = H(l)(n)nHZ('.:) Cor Hy (),
let

J(u) = % (a(u))2 for u in V.
Then
G(u) = -ka(u)Au € H.
We refer to [2], Example 5.3, for the proof. It is clear that (2.5) holds.

Thus Theorem 3.1. ensures existence of a T-periodic weak solution of
" A 2 2
u" + 6u' + ah’u - {8 + k [ (Wu)“dQ}Au = h.
Q

Generalizing, let M be a ¢! function such that, for s > 0,
M(s) > ks and M'(s) > 0.
Take V = U and A as in Section l. Let
1 a(u)
J(u) = 3 g M(s)ds for u in V.
Then
G(u) = M(a(u)), Au ¢ H.
We refer to [2], Example 5.3, for the proof. It is clear that (2.5) holds. Therefore
Theorem 3.1 ensures existence of a T-periodic weak solution of

w" + sut + aalu + 18+ M(Ja 2] ) au = n.
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