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ABSTRACT. In continuing from previous papers, where we studied the existence and

uniqueness of the global solution and its asymptotic behavior as time t goes to

infinity, we now search for a tlme-perlodlc weak solution u(t) for the equation whose

weak formulation in a Hilbert space H is

d (u’ + 6(u’ v) + b(u v) + 8a(u,v) + (G(u),v) (h,v)d--{ v e

where: d/dr;(,) is the inner product in H; b(u,v), a(u,v) are given forms on

subspaces UcW, respectively, of H; 6 > 0, ) 0, 8 ) 0 are constants and s + 8 > 0; G

is the Gateaux derivative of a convex functional J: VcH [0,) for V U,

when > 0 and V W when 0, hence B > 0; v is a test function in V; h is a given

function of t with values in H.

Application is given to nonlinear inltial-boundary value problems in a bounded

domain of Rn.
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I. INTRODUCTION.

In continuation of Brito [I], [2], where we studied existence and uniqueness of

the global solution and its asymptotic behavior as time t goes to infinity, Zwe now

search for a time-periodic weak solution u(t), i.e., such that

u(0) u(T); u’(0) u’(T)

for the equation whose weak formulation in a Hilbert space H is

td-(u’,v)
+ (u’,v) + sb(u,v) + 8a(u,v) + (C(u),v) (h,v) (1.1)

where

--d/dr; (,) is the inner product in H; b(u,v), a(u,v)
are given forms on subspaces U W, respectively, of H; > 0, 0, B 0 are

constants and = + 8>0; G is the Gateaux derivative of a convex functional

J: V cH [0,), for V U, when > 0, and V W, when O, hence 8 > O; v is a

test function in V; h is a given function of t with values in H.
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Application is given to initial-boundary value problems in a bounded domain of

Rn for the followlng equations, in which p > 2 depends on n, a > O, B O, k > O:

u" + u’ Au + lulP-2u h

u" + u + aA2u- BAu + u +’’lul p-2u=h

u" + u’ + A2u { + k f (Vu)2dR}gu h (1.4)

and the generalization of (1.4) in a Hilbert space H

u" + u’+ A2u + BAu + M(IAI/212)Au h (1.5)

for A a linear operator in H, M a real function.

For related problems, we refer to Biroll [3], Lovlcar [4]; see also references in

Brlto [I].

2. PRELIMINARIES.

We consider three Hilbert spaces Uc Wc H each continuously embedded and dense in

the following.

We assume the injection W cH compact.

Let (,) denote the inner product in H and its norm.

Let a(u,v) and b(u,v) be two continuous, symmetric, billnear forms in W and U,

respectively. We shall write a(v) for a(v,v), b(v) for b(v,v). We shall assume

that (a(v)) I/2"
defines in W a norm equivalent to the norm of W and, similarly, that

(b(v)) I/2"
defines in U a norm equivalent to the norm of U.

Let c > 0 be such that

clvl 2 a(v) for v in W. (2.1)

Let A be a linear operator in H, with domain D(A) such that UcD(A)c W and

a(u,v) (Au,v) for u in U, v in W

b(u,v) (Au, Av) for u,v in U

> 0, a 0, B 0 are constants and a + B > 0.

Assume

V U if a > 0, B 0;

V W if a 0, B > 0.

Consider a convex functional

J: V [0,(R)) such that J(0) 0.

Let G: V H be the Gateaux derivative of J. We assume G is Gateaux

differentiable, locally Lipschitz and G(O) O.

With these hypothesis, we have, from [2] Theorem 3.1 and [I] Lemma 2.1,

respectively
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THEOREM 2.1. Given u0 in V, u in H, h in L2(O,’r;H), there is a unique function u

such that

a) u e U (0,T;V); u’ e n (O,T;H); G(u) g g (0,T;II)

b) for all v in V, u satisfies,
d (u’,v) + 6(u’,v) + ab(u v) + Ba(u,v) + (G(u),v) (h v) (2.2)

dt

c) u satlsfies the initial conditions

u(0) no; u’(0) u

d) u satisfies the energy equation

t t
E(t) + lu (s)12ds E(0) + I (h(s) u (s))ds

0 0
r2.43

where

2E(t) lu’(t)l 2 + b(u(t)) + 8a(u(t)) + 2J(u(t)).

THEOREM 2.2. In the conditions of Theorem 2.1, the map S: VH VH given by

S(uo,U 1) (u(L),u’(t)

is, for fixed t, (sequentially) weakly continuous (i.., if n > we.;ly in V x H,

then S(#n) > s(#) weakly in V H).

We shall, further, assume that

2J(v) (G(v),v) < 0 for v in V. (2.5)

3. EXISTENCE OF TIME-PERIODIC WEAK SOLUTIONS.

We shall refer to u(t) in the coudltlons of Theorem ’.. a the solution of (2.2)

with initial conditions (Uo,U I) m H, given by (2.3).

THEOREM 3.1. If h C([O,T];H) there is at least ,ne solution of (2.2) with

initial condition in V H such that

u(O) u(T); u’(0) ,’(T). (3.1)

PROOF. Take v u(t) in (2.2 mul.[plied by constant 2y > 0 and add it to the

energy equation (2.4) differentiated an, ,nultiplied by 2, to ,,btain, with (2.5),

d--- u + b(u) + ga(.) + 2J(u) + 2T(u,u )}

+ 27{ u’ + eb(u) + Sa(u) + 2J(u) + 2y(u,u )}

+ 2(8-2y) u’ + ’u’,u] 2(h,u’ + yu).

For 0 < 7 < 6/2, let

w(t) lu’ + "ul 2 + ab(u) + a(u) + 2J(u).

Then we have

w’(t) + 2yw(t) 2(h,,a’ + 7u) 2(6-2)(u’,u’ + 7.) +

2 d 2 2

(3.2)
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The right-hand side of the above Inequality is equal to

2(h,u’ + yu) + 2(y2u- (6- 2y)u’,u’ + yu)

2(h,u’ + yu) 2(6- 2y)(u’ + u,u’ + yu) + 2(6- )(yu,u’ + yu).

Therefore

w’(t) + 2yw(t) 2(h,u’ + yu) + ( $)2X2]u]

Observing (2.!) and (3.2), we obtain

w(t) ) u’ + "(u
2 + u with e ac + Bc > O.

By assumption, B + > 0.

We choose 0 < y < /2 so that

2 2(e-x) x <P 2 (i-2x)

(3.3)

(3.4)

(3.5)

This is possible, because it amounts to choosing y so that

B(X) (6 V)2X 4 e (8 2X) ( 0

and lira B(’f) -4 e ( 0.

It follows from (3.3), with (3.4), (3.5), that

w’(t) + 2wt) 2]h(t)[ ,/w(t) + pw(t).

Hence for 0 g t g T,

w(t) g F(t)

where
-2Tt

t
F(t) e {w(0) + f e2S[21hl4w + pw]ds}.

0

Therefore, because of (3.6), we have

(t) g (O 2x)F(t) + 2]h()[/F(t).F’

Let F(t) r, with

(3.6)

(3.7)

r ) max

0 t T

Then F’(t) O. It follows, using (3.6), (3.7), that if w(O) r then w(t) r,

for 0 t T.

Consider

K {(u0,u l) V x H; [u + Tu012 + ab(u0) Ba(u0) + 2J(u0) r}.

We proved that the map S: V x H V H given by

takes K into K.
S(uo,U x) (u(T), u’(T))

It is easy to check that K is a nonempty, closed, bounded, convex subset

of V x H.

The fact that S has a fixed point, i.e., that (3.1) holds for some (Uo,U I) c K,

now follows from Theorem 2.2 as a consequence of the well-known fixed point Theorem:
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Let B be , :-;elarable, reflexive Banach space, K a nonempty closed, bounded convex

subset of B, and S a (sequentially) weakly continuous operator of K into K. Then S

has at least one fixed point In K.

4. APPLICATIONS

We devote thls Section to applications of Theorem 3.1 involving Inltial-boundary

value problems in a bounded domain R with regular boundary in Rn for equations (1.2),

(1.3), (1.4).

In what follows

H L2(fl), W H0(fl), and

Le t

l() 0 H2(),A -A, D(A) H
0

b(u,v) (Au,Av), U H() 0 H2(R).

2
Note that similar results are obtained if we suppose U Ho(fl).

For > 0, h e C([0,T]; H), we have

EXAMPLE 4.1. Let a 0, 8 I, V W H0(R) and

J(u) [ulPLP() for u in V

where 2 < p 2(n-l)/(n-2) if n > 2; p > 2 if n 2. Then J(u) is well-deflned in V

and

lul U H.

We efe .o 2], example 5.1, for the proof. It Is clear that (2.5) holds. Therefore

Theorem 3. ensures existence of a T-perlodlc weak solution of

u" + u’ Au + IulP-2u h.

H2EXAMPLE 4.2. For a > 0, 8 0, V U H0(fl)f] (fl) (or H (fl)), let

- lul p

LP(R)
for u in V

where

2 < p 2(n- 2)/n-4) if n > 4; p > 2 if n 4.

Then J(u) is well-deflned in V and

We refer to [2], example 5.2, for the proof. It is clear that (2.5) holds. Then

Theorem 3. ensures existence of a T-perlodlc weak solution of

u" + u’ + aA2u Au + u + IulP-2u h.
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EHPLE. 4.3. For a > 0, B O, k > O, V U H ()0H2(’2.) (or H0()),

k 2J(u) - (a(u)) or u in v.
Then

O(u) --ka(u)Au e H.

We refer to [2], Example 5.3, for the proof. It is clear that (2.5) holds.

Thus Theorem 3.1. ensures existence of a T-perlodlc weak solution of

u" + u’ + aA2u [B + k --(Vu)2df/}Au h.

Generalizing, let M be a C function suclt that, for s > O,

M(s) )k and M’(s) > O.

Take V U and A as in Section [. Let

Then

a(u)
J(u) - ’ M(s)ds or u tn V.

0

G(u) -M(a(u)), Aug H.

We refer to [2], Example 5.3, for the proof. It ts clear that (2.5) holds. Therefore

Theorem 3.1 ensures existence of a T-perlodlc weak solution of

u" + u’ + A2u + [B + M(IAI/2UI2)] At, h.
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