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ABSTRACT. An inductive limit E =indlim E, is ultrarcgular if it is regular and each set
B C E,, which is bounded in E, is also bounded in E,. A necessary and sufficient condition

for ultraregularity of E is given provided each E, is an LF-space which is closed in Epy;.
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Let F be a locally convex space and B C F an absolutely convex subset. We denote by Fg
the linear hull of B and provide it with the topology generated by the Minkowski functional of
B. If the toplogical space Fp is Banach then B is called a Banach disk. In [1] de Wilde calls
the space F fast complete if every set B, bounded in F, is contained in a bounded Banach
disk. Every sequentially complete space is fast cormplete.

A strict inductive limit of a sequence F; C F; C --- of Fréchet spaces is called an LF-space.

If S € XNY, where X and Y are locally convex spaces, then ¢fxS and cfyS are the
respective closures of S in X and Y. Throughout the paper E; C E; C --- is a sequence
of Hausdorff locally convex spaces with all inclusions id: E, — E, ., continuous. We denote
indlim E, by E.

In (2] Floret calls an inductive limit E regular, resp. a-regular, if every set bounded in E
is bounded, resp. contained, in some E,. An a-regular inductive limit is ultraregular, resp.
weakly ultraregular, if each set B C E,, which is bounded in E, is also bounded, resp. weakly
bounded, in E,.

In [3, §4, Prop. 4] Dieudonné and Schwartz proved that a strict inductive limit is ultra-
regular if each space E, is closed in E,,;. In the casc the inductive limit is not strict some
restrictions on topologies of the spaces E, have to be imposed.

We introduce two properties:

(P) Every closed absolutely convex neighborhood in E, is closed in Eni.
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(Q) If U is a closed absolutely convex neighborhood in E, and V is the closure of U in E,,
then U=V NE,.

Evidently P => Q and if each space E, is closed in E,,; then P is equivalent to Q. If the
inductive limit E is strict then Q holds.

Lemma 1. (Q) holds iff each real f € E., has a real continuous linear extension to En4;.

Proof. Assume (Q) and take a real f € E!,, f # 0. The set U = f~![—1,1] is a closed
absolutely convex neighborhood in E,. Let V be the corresponding set V C E,4; from (Q). If
E, CV wewould have U = VNE, = E, and f = 0, which contradicts our assumption f # 0.
Hence we can choose zo € E,\V. Since V is absolutely convex and closed in E,,4;, there exists a
realg € E},, such that V C g~}(—o0, 1] and g(zo) > 1. Further f~(0) C ¢g~!(0) which implies
f(zo) # 0. Without a loss of generality we may assume f(zo) = 1. Then f(z — f(z)zo) =0
for z € Ey and (z ~ f(2)z0) € £}(0) € g74(0). Henece, g(z — £(2)z0) = g(2) ~ £(z)g(a0) = 0
and the functional (g(zo))~'g € E.,, is the desired extension.

Assume that each real f € E), has a real extension ¢ € E ;. Take a closed absolutely
convex neighborhood U C E,. By the Hahn-Banach theorem there exists F C E!, such that
each f € F is real and U = n{f~!(—o0,1]; f € F}. Let G be the set of all real extensions
of all f € F to Epyy. The set V = N{g~!(—00,1];¢ € G} is closed and absolutely convex in
E,.;,. Evidently U Cc V N E,. Assume U # V N E,. Then there is y € (V N E,)\U C E,\U
and f € F such that y € f~!(—~o00,1] = E, N g~!(—00,1], where g € G is an extension of f.
But theny € E,NV C E,Ng~!(-o0,1|, which is a contradiction. Hence U = V N E, and
(@) holds.

Lemma 2. (P) = E a—regular.

Proof. Assume that E is not a—regular. Then there is a set B bounded in E which is
not contained in any E,. By taking a subsequence of E;, E;,- - -, we may assume that for any

n € N there exists b, € (B N Ep)\En-1, Eo = {0}.

Since by # 0, there is a closed absolutely convex neighborhood U, in E, such that b; € U;.
Also b; ¢ Ey. Hence }b; ¢ Uy. By (P), U, is closed in E; and there exists an absolutely convex
neighborhood V; in E; such that (b, + Vi+ Vi) N Uy = 0 and (3b2 + V1 + V1) N Uy = 0. Then
U; = clg,(Uy + V1) is a closed absolutely convex neighborhood in E; such that b, 3b; € Us.
Again U; is closed in E; and %bs & U,. Hence there is an absolutely convex neighborhood V;in
Ejy such that (1by + V2 + V;) N U; = 0 for k = 1,2,3. The set Us = clg,(Uz + V3) is a closed
absolutely convex neighborhood in Ej3 for which %b; ¢ Us, k=1,2,3,4.

Once all such U,,n € N, are constructed, U{U,;n € N} is a neighborhood in E which

does not absorb B, a contradiction.
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Lemma 3. (P) = E weakly ultraregular.

Proof. Assume (P) and E not weakly ultraregular. By lemma 2, E is a—regular. Hence,
there exists a set B bounded in E and n € N such that B C E, but B is not weakly bounded
in E,. Without a loss of generality we may assume n = 1.

Take a real f; € E} which is not bounded on B and choose a sequence b, € B,n € N,
such that fi(b,) > n. Since (P) implies (Q) there is a real extension f; € Ej of f, and a real
extension f3 € E} of f;, etc. Each set U, = f;}(—00,1], n € N, is a closed absolutely convex
neighborhood in E, and Uy C U, C +--. Hence U = U{U,;n € N} is a O-neighborhood in E.
For any n € N we have b, & nU, i.e. U does not absorb B which is a contradiction.

Theorem 1. Let (P) hold and each E, be fast complete. Then E is ultraregular.

Proof. By Lemma 2, E is a-regular. Let B C E be bounded. Then B C E, for some
n € N. By Lemma 3, B is weakly bounded in E,. Since E,, is fast complcte, B is also bounded
with respect to the topology of E,, see [4].

Lemma 4. Let each E, be an inductive limit of metrizable spaces and E ultraregular.
Then (Q) holds.

Proof. Take a real f € Ei,f # 0. It suffices to show that f has a continuous linear
extension to E;. Put F = (E,, top E,). Since the inclusion id: E; -» F is continuous, each

set bounded in E, is bounded in F. On the other hand if B is bounded in F it is bounded in
E and B C E,. Then B is bounded in E; by the ultraregularity of E. Hence the spaces E|
and F have the same families of bounded sets.

The set A = f~!(-1,1) absorbs all sets bounded in E}, hence it absorbs all sets bounded in
F. The space F, as an inductive limit of metrizable spaces, is bornological. This implies A is a
O-neighborhoodin F. If a < b,z4 < f~!(a,b), and d = min(f(zo) —a,b— f(z,)), thend > 0 and
Zo+dA C f~(a,b). Thus f~(e,b) is openin F and f~}(—o0,1] = F\U{f"}(1,n);n € N} is
closed in F. The set M = ¢fg,f '(—o0,1] is closed absolutely convex in E; and f~!(c0,1] =
MnNnF=MnNE,.

Take z, € E, for which f(zy) > 1. Then 1y & M and there exists a real g € E} such that
M C g7'(—o0,1] and g(z;) > 1. If z & f~1(0) then f(kz) = O for each integer k& which implies
kz € M and z € g71(0). Hence f~1(0) ¢ ¢7*(M n~nd there exists ¢ > 0 such that cg(z) = f(z)
for z € E,. The functional cg is the sought linear continuous extension of f to Ej.

Theorem 2. Assume
1. Each E, is closed in Epy;.
2. Each E, is an inductive limit of metrizable spaces.

3. E is ultraregular.

Then (P) holds.
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Proof. By Lemma 4, assumptions 2 and 3 imply (@) which combined with the assumption
in 1 implies (P).

Theorem 8. Assume
1. Each E, is closed in Ep4;.
2. Each E, is LF—space.

Then E is ultraregular iff (P) holds.
Proof. The if part follows from Theorem 2. For the only if part we observe that each

LF-space E, satisfies the assumptions of the Dieudonné-Schwartz Theorem in (3]. Hence E,
is ultraregular and therefore also regular. Since regular inductive limit, not necessarily strict,

of Fréchet spaces is fast complete, [5], each space E, is fast complete. Then, by Theorem 1,

(P) implies the ultraregularity of E.
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