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ABSTRACT. A study is made of non-Newtonian HHD aligned steady plane fluid flows

to find exact solutions for various flow configurations. The equations of motion

have been transformed to the hodograph plane. A Legendre-transform function

is used to recast the equations Jn the hodograph plane in terms of this transform

function. Solutions for various flow configurations are obtained. Applications
are investigated for the fluids of finite and infinite electrical conductivity

bringing out the similarities and contrasts in the solutions of these types of fluids.
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1. INTRODUCTION. Transformation techniques are often emplo:y-d for solving non-linear par-

tial differential equations and hodograph transformalion method is one of these techniques which

has been widely used in continuum mechanics. W. F. Aes [1] has given an excellent survey of

this method together with its applications in various other fields. This paper deals with tle ap-

plication of this method for solving a system of non-linear partial differential equations governing

steady plane incompressible flow of an electrical conducting second-grade fluid in the presonce of

an aligned magnetic field. Recently, A. M. Siddiqui et al [2] used the hodograph and Legcndre
transformations to study non-Newtonian steady plane fluid flows. O. P. Clandna et al [3] has also

applied this technique to Navier-Stokes equations. Since electrical conductivity is finite for most

liquid metals and it is also finite for other electrically conducting second grade fluids to which

single fluid model can be applied, our accounting for the finite electrical conductivity makes the

flow problem realistic and attractive from both a physical and a mathematical point of view. We
have also included electrically conducting second grade fluids of infinite electrical coaductivity to

make a thorough hodographic study of these fluid flows and to recognize the dawn an,t future of

superconductivity in science.

We study our flows with the objective of obtaining exact solutions to various flow configura-

tions. We start with reducing the order of governing equations by employing M. l:I. Mtrtin’s [4]
perceptive idea of introducing vorticity and energy functions. The plan of this paper is as follows:

In section 2 the equations are cast into a convenient form for this work. Section 3 contains the

transformation of equations to the hodograph plane so that the role of independent variables :. y

and the dependent variables u, v (the two components of the velocity vector field) is interchanged.

We introduce a Legendre-transform function of the streamfunction and recast all our equations

in the hodograph plane in terms of this transform function in Section 4. Theoretical development
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of section 4 is illustrated by solutions to the following examples in section 5:

(a) flows with elliptic and circular streamlines

(b) hyperbolic flows

(c) spiral flows

(d) radial flows.

These applications are investigated for the fluids of finite and infinite electrical condlctivity

bringing out the sinfilarity and contrasts in the soluti,ns of these two types of flfids.

2. EQUATIONS OF MOTION. The steady, plane flow of an inconpressible second-grad’ flid

of finite electrical conductivity is governed by the following system of equations:

Ou
+ - o
Oy

oo 0,,)0-+vN +N

OHx. OH2
Oz +--y =0

where u, v are the components of velocity field ]7, H, H2 the components of the magm.tic vector

field ]E?, and p is the pressure function: all being functions of x,y. In this system
and c2 are respectively the constant fluid density, the constant coefficient of viscosity, the con-
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stant magnetic permeability, the constant electrical conductivity and the normal stress moduli.

Furthermore, K is an arbitrary constant of integration obtained from the diffusion equation

We now introduce the two dimensional vorticity function w, the current density function j

and energy function e defined by

Ov Ou OH2

where q2

Ial

into the above system of equations d obtn the foong system:

Ov
+ 0 (otity)

o V axvV2w *jH
(Bne momentm)

1ug vg j+ g (ffusion)

OHa OH,_

0--- + 0 (solenoidal)

OH: OHa (current density)

w (vorticity)
0 0v

(2)

of seven partial differential equations in seven unknown functions u,v, w, Ha, H2, j and e as

functions of z,y. This system governs the motion of second-grade fluid of finite electrical con-

ductivity. For the motion of second-grade fluid of infinite electrical conductivity, we only replace

the diffusion equation in the above system by uH2 vHi K.

ALIGNED FLOW. A flow is said to be an aligned or parallel flow if the velocity and the magnetic

fields are everywhere parallel. Taking our flow to be an aligned flow, there exists some scalar

function f(z,y), called the proportionality function, such that

it f(,v)V (3)

Introducing this definition of the magnetic vector field in the above system, the aligned flow

is governed by the following system of seven equations

+ _x-- 0 (4)

Oe O
pvw I--a-- a,vV2w I*fvj (5)
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1
#,oj+K=0 (7)

of

" +’N =0 (s)

Of Off + i

=w (10)Oz

i i ,,k-o fu-tio- ,,(:, ), ,,(:, ),,,,(:, ), f(, ),./(:, u), (:,) ,d = bit,-y o.t,t
K. Once a solution of this system is determined, the pressure and the magnetic functions are

obtained by using the definition of e in (1) and the definition of in (3) respectively.

3. EQUATIONS IN THE HODOGRAPH PLANE. Letting the flow variables u(z,y),v(z,y) be

such that, in the region of flow, the Jacobian

0(.,)g(’Y) o(:y) # o, o < IJI < ()

we may consider x and y as functions of u and v. By means of z :r(u,v),y y(u,v), we derive

the following relations
Ou Oy Ou
o- J-- -=Or’

Ov
Ov I (12)o% Oy Oz

and

Og O(g, z) =O(:)
(13)

h. a a(,) a((., ), (,)) (.,)i .y oti.uo]y aifftiU tion nd

J J(’/= 0(,/- [0(,/l
J(’/" (4/

Emplong hese transformation relations for tge flrs order parti derivatiees appearing i

system of euations (4) (10) and the transformation equations for the functions ,j, ], e defined

by

.(,) ((=,),(=,)) z(=,),

j(,) j((,),(,)) j(,),

f(x,y) f((u,v),y(u,v)) f(u,v),

(,) ((,),(,)) (,),

the system (4)-(10) is transformed into the following system of seven equations in the (u, v)-ple:

-0(, [o(, o(,

x,) + + ,"fuj (17),.) -+.gw + ’] t(’Jw’) o(w,)
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where

p.--j + K 0 (18)

o(f,) o(,f)
uO(u,v) + O(u,v)

0 (19)

-[ o(7,,) o(,,7)]I + s ,,,,) "o(,,,,)j s (uo)

J
0v "- (21)

0(,=)

/w =w(,)- 0(,) (2)

0(,v)
for the six unknown functions, z, y, w, e, , of u,v and an arbitrary constant K when , W,
Wu are enated, using (14) and (22).

Once a solution x x(u,v), y y(u,v), (u,v), (u,v), j j(u,v), f
f(u,v) is deterned, we are led to the solution of u u(x,y), v v(x,y) and therefore w

(u(x,y),v(z,y)) w(x,y), e e(x,y), j j(x,y), f ](x,y) for the system (4) (10)
governing the fitely conducting flow.

The above anMysis Mso holds true for infinitely conducting second-grade fl,fid flows. How-

ever, for these flows, the arbitrary constant K 0 and equation (7) and its transformed equation

(18) are identicMly satisfied.

4. EQUATIONS FOR THE LEGENDRE TRANSFORM FUNCTION AND F(U, V). The equa-

tion of continty impfies the estence of a streaunction (x,y) such that

d=-vdx+udy or =-v, =u. (23)

Likewise, (15) implies the existence of a function L(u, v), called the Legendre transform function

of the streamfunction (z,y), so that

OL OL
dL=-ydu+zdv or

0u =-Y’ 0v
=x (24)

and the two functions (z,y), L(u, v) are related by

(25)

Introducing L(u,v) into the system (15)-(21), with J, W1, W given by (14), (22) respec-

tively, it follows that (15) is identically satisfied and this system may be replaced by

-o ( w. ) o(o,sW‘)s o-.., ’0 .sw ,,.s
O(u,v)

--,o, , o(r,Tw,)
-o-(V..; -,,..o,+ .sw. + ....s

O(u,v)
(,-w,)

00L o(OL(,7) +’7) o 19.9o(,,,,,) o(,,,,,)

(28)
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where now

(30)

(31)

J
Ov \

(32)

w,
O(u,v)

W_=
O(u,v)

(33)

for the five functions L(u,v), (u,v), E(u,v), j(u,v), f(u,v) and an arbitrary constant K, after

J, Wz, W2 are elinfinated.

By using the integrability condition

OL 0
OuOv 0%

i.e. oro-----2e o,o---=t in (z, y)-plane, we eliminate (u, v) from (26) and (27) and obtain

-[ O( or,j-)+ t,*f ,,
O(u,,) +" 0(,,,,,) j

(34)

(a) Since j has a constant value -#*oK for a finitely conducting fluid as given by (28), it

follows that L(u,v), f(u, v) satisfy equations (29), (30) and

v(,,- + ,,w).

(35)

(b) Equation (28) is identically satisfied for an infinitely conducting fluid flow _and j is given

by (30). Elirninating from (30) and (34), we nna that o the nows L(,,v)la/(=,) satisfy

equations (29) and
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o(, ,) o,

o( 7{o( -w,)/o,,,+o(L 7w)/oo, })+ a v
(u, v)

+uO(L’7{0( ffW) /O(u’v)+O(O(u,v) ,7W:) /O(u v)})] (36)
J

+ .]
0 o o

where F and F are defined

O( o((’
0(, 0(,

Suing up, we have the foowing theorems for finitely conducting and infitely conducting

TgeoN I. If (, v) is le Legendre lrsfom function of a streunction of seady
ple gned o of incompressible econd-greded of te ecricM conductivity d

f(, v) is te lrsformed proporlionty function, le (,v) d I(, v) ml satisfy equations

(29), (0) d () ere j(,v), {,v), J(,v), W(,v), W(,v) een b equations (28),
() o ().

Teoe II. (, v) i le Legendre lrsform fnction of a reunction of te eque-

lions goerMngleedple gnedoof incompressiNe second-adedofinte elecN-

cM conductityd f(u, v) is the trsformed proportionty function, then L(u, v) d f(u, v)
must satisfy equations (29) d (36) where (u,v), (u,v), ff(u,v), W(u,v), W(u,v), F(u,v),
F(,) . y (30) to (33) a (3Z).

Once a sdution L L(u,v),f 1(u,v) is found, for wh’ch J evuated kom (32) satisfy

0 < IJI < , the solutions for the vdocity components e obtMned by sdng equations (24)
simteously. Having obtMned the vdocity components u u(z,y), v v(x,y), we obtMn

f(x,y) in the physicM ple om the sdution for f(u,v) in the hodograph ple. We, then,

obtMn the vorticity, the current densityd the ener functions by using V(z,y) d f(z,y) in

equations (10), (9), (5) d (6). FinMly, the pressure function d the magnetic vector fi’cld are

deterned om (1) d (3).

As various assumed forms for Legendre transform fimction are best handled if polar coordi-

nates in the hodograph plane are employed, we now develop the results of the above theorems in

polar coordinates (q, 0) in the hodograph plane. Expressing

u + iv qei#, (38)

we have the following transformations:
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0 0 sin 0 0 0 0 cos 0 0
=cosOoq q 00’ o% --=sinOb// +

q O0

0( F, G) 0(F*, G" 0(q, 0 1 0( F’, G*
O(u,v) O(q,O) "O(u,v) q O(q,O) (39)

where F(u,v)= F(q,O), G(u,v) G*(q,O) are continuo.sly differentiable functions. On using
these relations, and regarding (q, O) as new independent variables, the expressions for J, , Wa.
W,Fa, F and j in the (q, O) plane, take the forms

j.(q,O)=q4 [q202L* (OL* OL") (OL* 02L’)2] -’

-02 q+ 3-qb (40)

[OL 10:L IOL*
w’(q,O) =S" [+ q, 00 +j (41)

(
W;(q,)

0 sin+ o,
(42)

q O(q,)

W;(q,) (43)
q

(44)F;(q,)
0 ooz" I"

q O(q,)

F;(q,O)=-IO sinO+ o,
(45)

q O(q, O)

0
0 cosO" ,i=oz" /.

j*(q,O)=f*w’+J* sin
( 0 i oo’ )

o(,o

cos 0
0(q, 0)

j’(q,O) -’eK i aen in (46) if the fluid is flnitel conducting. Equations (29), (aS) and

(a6) are transformed to the (q,O)-plane

0 L* Of" 0 L" Of" 10L" Of"- =0 (47)Oq O0 OqO0 0q q O00q

(48)
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(49)

where X* is defined as

(50)

Having developed the above transformations, we state the following corollaries which respec-

tively follow from theorem and II:

COROLLARY I. /fL*(q, O) and f*(q, O) is the Legendre transform function ofa streamfunction

and the proportionality function respectively of the equations governing the motion ofsteady plane

aligned flow of an incompresslble second-grade fluid of tinite electricM conductivity, then L*(q, 0)
and f*(q,O) must satisfy equations (46), (47) and (48) where J*(q,O), o*(q, 0), W(q,O), W(q,O)
and x*(q, O) are given by (40) to (43) and (50).

COROLLARY" II. lf L*(q,O) and f*(q,O) are the Legendre transform of a streamfimction and

the proportionality function of the equations governing the motion of steady plane aligned flow of

an incompressible second-grade fluid of in/nite electrical conductivity, then L’(q, O) and f’(q,O)
must satisfy equations (47) and (49) where J*(q,O), w*(q,O), W(q,O), W(q,O), F(q,O), F(q,O)
and x*(q,O) are given by (40) to (45) and (50).

Once a solution L*(q,O), f*(q,0) is obtained, we employ the relations

OL* cos 00L* sin 00L* OL*
z sinO _---- + y + cosO-- (51)

q O0 q O0 Oqoq

and (38) to obtain the velocity components u u(z,y), v v(z,y) in the physical plane.

Following the determination of velocity components u + iv qei in physical plane we get f(z, V)
and the other remaining flow variables.
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5. APPLICATIONS. In this section we investigate various problems as apI)lications of Tl,’(,rem

and II, and their corollaries.

APPLICATION I. Let

L(u,v) Au + Bv + Cu + Dv + E (52)

be the Legendre transform function such that A, B, C, D, E are arbitrary constants and A, B are

nonzero. Using (52)in equations (31) to (33), we get

1 A+B Wa =0, W2=0. (53)J=
4AB 2AB

We now consider finitely conducting and infinitely conducting cases separately by applying
theorem and theorem II respectively.

FINITELYCONDUCTINGFLUID. EIiminatingL(u,v), (u,v), J(u,v), Wa(u,v), W2(u,v)
and j(u,v) from equations (29), (30), (35) by using the expressions for these functions from

(52), (53) and (28), we find that equation (35)is identically satisfied and f(u, v) must satisfy

AuOf Bv =0

cO] cO-]
(54)

(A + B)f + av-v + Bu-- + 2ABK,*o 0

if L(u,v) given by (52) is the Legendre transform function of a streamfunction of finitely con-

ducting fluid flow.

Solving equations (54), we have, (,, + .)-.-5 (.)_ a. K,’.;-f(u, v)
AKin"atn(u + v:) + (u)

where arbitrary functions (u) and (u) must satisfy

A - -B } (55)
A=-B

and

1
{B’(u)}v + {B’(u)u + -(A:z B2)u(u)} 0

{’(u)}v + {4AK*au}v + {u’(u)} 0

(56)

Since equations (56) and (57) hold true for every v, and A # 0, B # 0, it follows that we

have the following three possible cases:

(i) L(u,v) A(u + v:) + cu + Dv + E, -](u,v) C,(u + v’) -* AKI’a when

A B # 0 and C is an arbitrary constant.

(ii) L(u v) Au2 + Bv + Cu + Dv + E, -](u v) -2AB_,’,, whenA#0, B:/=0A+B
and A # +B.

(iii) L(u,v)=A(u2-v2)+cu+ov+E, f(u,v)=C2 when A=-B#0, C2
is an arbitrary constant and K 0.

We now proceed to study these three cases separately.

CASE (I). Using L(u, v) A(u + v2) + Cu + Dv + E in (24) and solving the resulting equations

simultaneously, we get

Employing (58)in f(u,v) Ca(u2 + v2)- AKIn*a, we obtain

(57)
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f(z,y) 4C1A [(y + C) + (, D)2)] -1
AK#’a.

Substituting for u(z,y),v(z,y) and f(z,y) in equation (3), we have

]q(z,y) {4CxA2[(y + C)’ + (z D):]- AK#’a}

.( y+C z-D)2A 2A

(59)

Using w X’
e(z,y). Using this solution for e(z,y) and (58)in (1), the pressure function is found to be

p(z y) ( P K2#’3a2 )8A: 4 [(Y + c)2 + (z

+ K#"aC: Agn [(y + C)’ + (z 9) + C3
where C3 is an arbitrary constant.

(60)

j -K#’o, equations (58), (59) in (5), (6) and integrating, we deternfine

(61)

CASE (II). In this case, we have L(u,v) Au + Bv + Cu + Dv + E,
and A # -I-B. Proceeding as in case (i), we obtain

f{u ,)= -AOU.’,,
A+B

2A 2B

where C4 is an arbitrary constant.

CASE (III). In this case, L(u,v) A(u v) + Cu + Dv + E and -](u,v) C2. Flow variables

for this case are:

2A 2A

i7 c=V
P [(y+C)2+(z-D)2] +p(=,) C

where C5 is an arbitrary constant.

3ax + 2a2 (63)

INFINITELY CONDUCTING FLUID. Using the expressions for L, J, , W, W2, F, F2 as

given by (52), (53), (37) in equations (29) and (36), we find that st(u, v) must satisfy

o.t oIAu-- Bv-- 0

of o!vN- =o
(64)

Solving equations (64) for f(u, v), we find that f(u, v) (u +v2) if A B and f(u, v) C
if A : B, where is an arbitrary function of its argument and C6 is an arbitrary constant.

Therefore, we have the following two cases:
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(i) L(u, v) A(u2 + v) + Cu + Dv + B, "(u, v) q(u + v), where is an arbitrary

function of its argument.

(ii) L(u,v) Au: + By +Cu+Dv+E,,’-/(u,v) C6 where C6 is an arbitrary constant

andB #A.
We now consider these two cases separately.

CASE (I). Without loss of generality, we take j(u,v) u + v. Using L(u,v) A(u + v2) +
Cu + Dv + E in equations (24), we obtain

-i=(u,v)= ( Y+C2A ’z-D)2A (65)

and therefore.
1

,((x,y) -- [(y + C) + (x D)]. (66)

Employing (65) and (66)in (9), we obtain

1
j(z,y) A [(u + C) + (z D)]. (67)

Using (65) to (67) in equations in the physical plane, we obtain

[(Y+C)+(z-D)] y+C z D
2A’ 2A

(68)
(,) ( P ’)

where Cv is arbitry constant.

CASE (II). Using L(u, v) Au + By + Cu + Dv + E where A B, and (u, v) C, we obtn

V=(u,v)= ( Y+C2A ’x-D)2B
A+Bj(z,y) 2AB..Un

3aa +(,U)= [(u+C)’+(’-D)’]+ 8 AB (69)

8A:B
where Ca is arbitrary constant.

Suing up, we have the following theorems:

TnEoaE III. H L(u,v) Au + Bv + Cu + Dv + E is the Legene trsform of a

streunction for a steady, ple, gnedo of incompressible second-graded of nite
ectricM conductity, then the ow in the physicM ple

(a) a vortexoven by equations (58) to (51) when A B in L(u, v).
(b) ao with hyperboc strenes witho viables given by (63) when B -A

in L(u, v).

when B # iA.
TnEORE IV. H L(u,v) Au + Bv + Cu + Dv + E is the Legcndre transform of a

strenfunctlon for a steady, ple, Migned, incompressible innitely conducting second-grade
uid o, then theo in the physicM ple is:
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(a)
(b)

a vortex flow with flow variables given by (65)-(68) when A B in L(u,v).
a flow with flow variables given by equations (69) with

the streangincs when B A in L(u,v).

APPLICATION II" We let

L(u,v) (Au + B)v + Cu + Du + E (70)

to be the Legendre transform function, where A,B,C,D,E are arbitrary constants and A is

nollzero.

Evaluating J, , W1 and W2, by using (70) in equations (31) to (33), we get

2C
J= A:’ W- A:’ W, =W =0. (71)

FINITELY CONDUCTING FLUID. Using equations (28), (70), (71) in equations (29), (30),
(35), we find that equation (35) is identically satisfied and f(u, v) must satisfy equations

(2Cu + Av)- Au-- 0 (72)

Of Of A K2CI -t-(2Cv Au -v AV -u
Multiplying (72) by v, (73) by u and subtracting, we obtain

(73)

Of 2Cu u-- A(u: + v)f + AK#’au + v
0 (74)

Solving equations (72) and (74), we get

A

](u v)=
exp[-tan-’ ;](u)+n a, C0
-AK*at-’ () + (u), C 0

where arbitrary functions (u) and 1/,(u) must satisfy

[Au’(u)]v -[4Cu(u)]v + [Aua’(u) 4C
-X- (,,)] o,

c#o
(75)

and
[u’(u)lv + [2AKpoulv + [u’(u)l O,

C=O.
(76)

Equations (75) and (76) hold true for all v if (u) 0 and /,(v) D, where D, is an

arbitrary constant. Therefore, we have the following two cases:

(i) L(u,v) (Au + B)v + Cu + Du + E, f(u,v) K.’o, when C 0.

(ii) L(u,v)=(Au+B)v+Du+E,f(u,v)=Dx-
Using L(u,v) and ](u,v) for the two cases and proceeding as in application I, the flow

variables in the physicM plane are obtained to be:
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CASE (I).
V (u’v) ( z ,2CB- AD- 2Cz-

] A Kl a -2C
P [(x B): + (y + D)2]2A

.3gl a [Ay(x-B)+C(x-B):+ADz,]2C
A +C+ (6al + 4a2)

A4 + D
where D2 is an arbitrary constant.

(77)

CASE (II).

u’ v ( z y + D

p 6al + 4a2V(x,V) D3 [(z B) + (y + D)] + A2
(78)

where Da is an arbitrary constant.

INFINITELY CONDUCTING FLUID. Using L, , , Wa, W2, Fx, F2 #yen by (70), (71), (37)
in equations (29) d (36), we find that l(u, v) must satisfy

(ff + v) 0

Solving (80), we obtain

(u,v) D4 (80)

where D4 is an arbitrary constant.

We employ L(u,v), f(u,v) given by (70), (80) respectively in (24), (3) and equations in the

physical plane, and obtain

(u’v) ( z ,2CB- AD- 2Cx

and
p(z,y)=DL- -i[(z-B +(y+D

2nl*C C
(x B)A: y(z B) + + Dx (81)

A +C+ (6Ctl + 4Ct2) A4
where D5 is an arbitrary constant.

Summing up, we have the following theorems:

THEOREM V. /f L(u,v) (Au + B)v + Cu + Du + E is the Legendre transform fimction

of a streamfunction for a steady, plane, ah’gned, incompressible, tlnitely conducting second--grade
fluid flow, then the flow in the physicM plane is
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()

(b)

given by equations (77) having Cx + Axy ABy + (AD 2BC)z constant as

its streamlines when C 0 in L(u, v).
a flow wih recangd hyperbol (z B)(y + D) constan its streamlines

d is given by equations (78) when C 0 in L(u, v).

THEOREM VI. HL(u,v) A(u + B)v+Cu + Du + E is the Legendre transform finction of

a streamfunction of a steady, plane, ah’gned, inconpressible, intinitely conducting second-grade

fluid flow, then the flow in the physical plane is given by equations (81) with

Cz + Azy- ABy + (AD 2BC)z constant

as its streamlines.

APPLICATION III: Let

L*(q,O) F(q); F’(q) O, F"(q) # O. (82)

Using (83) in (40) to (43) and (51) to evaluate J*, w*, W*, W, z and y, we get

j.
q ,. aF"(q) + F’(q)

F’(q)F"(q)’ F’(q)F’(q)

W lw" cosOF’(q), W; -w" sin0F’(q),
q q

x F’(q)sin e, y =-F’(q)cosO (83)
We now study finitely conducting fluid flow and infinitely conducting fluid flow as applica-

tions of corrolaries and II respectively.

FINITELY CONDUCTING FLUID. Eliminating L*, J*, WI*, W:* frOIll equations (46), (,t7) and

(48) by using ($2) and (83), wc find that F(q) and f*(q,O) must satisfy

q Of*f’w* -t I- Kl*a 0 (84)F"(q) Oq

of" =0 (85)00

w_"(q) ]’ 0 (86)w*’(q) + F’(q)
F"(q)J

so that F(q) is the Legendre transform function of a streamfimction. Here w*(q) is given in (83)
and j* -Kp*a has been used for the finitely conducting case. Since equation (86) is identically
satisficd when w* 0 and can be rcwritten as

w*"(q) F"(q) F"’(q)
=0 (87)w*’(q) F’(q) F"(q)

when w*’(q) # O, it follows that we have to deal separately with L*(q, O) F(q) having variable

vorticity and L*(q,O) F(q) having constant vorticity.

CASE 1. (Variable Vorticity). From the expressions for x,y in (83). we have

v/ + v +/-F’(q),
dr

+F"(q). (88)
dq

Integrating (87) twice with respect to q, we obtain

w*(q) MinlF’(q)l + M: (89)
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where M1 and M2 are arbitrary constants.

Substituting for w*(q) given in (83) into (89), we get

dq
q + r-r 4-(Mrtnr + Mr) (90)

since F"(q) :it: 0 and, therefore,
Integrating the differential equation (90), we get

q + rent + r + (91)

where M is an arbitrary constant.

Employing (88), (91) in equations (51) and making use of the definitions u qcosO, v
Ov 8uqsinO and w 0 0, we obtain

u(x y) _y [_M_gn(x2 + y2) + (2M2 M ) Mz

M f.n(x: y (2M2- Mi) M
-4- + )+

4 + -----,(,y) -t,,( + y’-) + M=

Using expression for w*(q) from (83) in equation (84) and making use of (85), we have

(92)

qF’(q)(q) + _K__p’a F,2(q) 0
2

f’(q,O) (q).

Integrating the above equation, we get

M4 K’aF’(q)
if(q, 8) (q) (93)

qF’(q) 2q

where M4 is arbitrary constant.

Substituting expressions for F’(q) and q given by (88) and (91) respectively into equation

(93), we obtain

f(x,y) =M4 --4-(x: + )gn(x -4- + (x + 4- Ma

2

+ 4

(94)

We use u(x,y), v(x,y) and l(z,y) given by (92) and (94)in equation (3) and obtain

-M.ty Kl*ay Mz Kv*az)(z,y)=
z2+y------+ 2 ’z2+y’- 2

(95)
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Using j -#’oK, equations (92), (94) in equations (5) and (6) and integrating, we get

e(z,y). Employing this solution for e(z,y) and (92) in (1), the pressure function is deterufined to

be

where Ms is an arbitrary constant.

(96)

CASE 2. (Constant Vorticity).
Using w* w0 constant in the expression for w* given in (83), we have

qF"(q) + F’(q) -woF’(q)F"(q) O. (97)

Integrating equation (97) with respect to q, we get

woF"(q) 2qF’(q) + 2Me 0 (98)

where Me is an arbitrary constant and if 0 0 then Me # O.

Substituting for F’(q) given by (88) into equation (98) and solving for q, we obtain

[wo V/’2 + Vi
M6 ]q=+ -V/+y + (99)

The solution for .f*(q,O) satisfying equations (84) and (85) is given by (93), where now q is

given by (99).
We proceed as in variable vorticity case and obtain

,(,y) -v - +

May k#"ay Mz
z2 + V

+ 2 ’z +V
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and

where M7 is an arbitrary constant.

+ M7
(100)

INFINITELY CONDUCTING FLUID. Employing the expressions for L, J’, W*, W*, F{ and

F2* as given by (83), (84), (44) and (45)in equations (47), (49), we find that F(q) and f*(q,O)
must satisfy

O0
0 (101)

LF" 2’f" -0.

Solving (101), (102), we obtain

l’(q, 0)

(102)

(103)

where is an arbitrary function of its argument, and F(q) satisfying

F"/
0. (104)

Analysing equation (104), we have the following two cases as in finitely conducting fluid flow:

(1) L*(q,O) F(q) having variable vorticity.

(2) L*(q,0) F(q) having constant vorticity.

CASE 1. (Variable Vorticity). Following the same analysis as in finitely conducting fluid flow,
we obtain q, u(z,y), v(z,y), w(z,y) as given by (91) and (92). Hence,

f(x,y) (q) (105)

where q is given by (91).

Proceeding as in previous example, we get

M/n(z yj(z,y) =(q) - + + U

+ ’(q)[--,n(z’ +yZ)+ (2M: 4)-M1
Ma M x + y:tn(z + y2)

g(x,y) (q)(u(x,y),v(x,y))

(106)

(107)
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p(z V) P M1cz +2 [tn(z V:=gu M+--- +

(MIM2-M?) y2]+ p MM (z+MM 2 4

[t.* + u*)] + +-u,u . +

[ (2M=-M) M
+ a M tn(x + y= + 4

+
z + y=

3 + 2a M 4M MM+ 2
+ (z+y} z+y +Ms

where Ms is arbitrary constt and j, H, H2 e ven by (106), (107).

CASE 2. (Constant Vorticity). In ts ce, using L*(q,) F(q) having constant vorticity w*

w0, and f*(q,8) (q), we obtn q, u(x,y), v(x,y) ven by (99) and in (100), f(x,y)

where q is now ven by (99),

(.,) () + ’() V + * 4. +

2](x,y) (q)(u(x,y),v(x,y)) (110)

[w8 woM6tn(x y M woM6
P(’) = ( + )+ -- + )- 2(. + ) 2

6a + 4a)M
(111)

+ * [f jH.d + f jH.dy] + (’ + u’)’

where M is arbitrary constant, and j, H, Hz are iven by (109), (110).
Sumng up, we have the following theorems:

TaEOREM VII. H L*(q,8) F(q) is the Legendre ransform function of a streamfunction

for a steady, plane, Migned, incompressible, nitcly conducting second-grade Buid Bow, then the

Bow in the physicM plane is

() . by ,o. (). () o () ( + u) [ut(,. + u:)+ M] +
ln(x + y2) constant its streauHincs, when vorticity is not a constant.

(b) given by equations (100) having wo(x + y) + 2Mn(x + y2) constant its

strearines, when vorticity is a constant.

THEOREM VIII. H L*(q,O) F(q) is the Legendre transform finction of a streamfinction

/’or a steady, plane, aligned, incompressible, intlnitely conducting second--grade fluid flow, the flow

in the physicM plane is

(a) given by equations (92), (105) to (108) having(z: +y2) [_tn(z + y:) + -P.t +
tn(z + y) constant as its streamlines, when vorticity is not a constant.

(b) given by equations (100), (109) to (111) with w0(x: + y-) + 2Mtn(z + y:)
constant as its stream/ines, when vorticity is a constant.
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APPLICATION IV. Let
L*(q,O) AO + B (112)

be the Legendre transform function, where A, B are arbitrary constants and A is nonzero.

We evaluate J*, to*, W*, W by using (112)in equations (40) to (43) and obtain

J*
q4
A2 W* W* 0. (113)

FINITELY CONDUCTING FLUID. Employing (112), (113) in equations (46), (47) and (48), we
find that equation (48) is identically satisfied and f*(q,8) must satisfy

OI__* AKI’_______o
O0 q2 / (114)
0/*

0

Solving equations (114), we obtain

f*(q,o) 4,(o)

wlmre an arbitrary function b(O) must satisfy

q2b’(0) + AIr*oK O. (115)

Equation (115) holds true for all q if ’(0) 0 and AK#*o 0. Therefore, we have

f* (q,O) (0) N (116)

where N is an arbitrary constant and K 0.

Using L*(q,O) AO + B and f*(q,O)= N, we obtain

-V=(,v)= +,+

p(z,y) N2 2(** + y*) + (6a, + 4a2) z, + y- (117)

where N2 is an arbitrary constant.

INFINITELY CONDUCTING FLUID. Employing L*, J*, *, W, W, F and F #yen by

(112), (113), (44) and (45) in equations (47), (49), we find that [*(q,O) must satisfy

of" =oo ()
of" o
OO

Solving equations (118), we obtain

I*(q,O) N3

where Na is an arbitrary constant.

Proceeding as before, we have the following results:

./=0
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p(x,y) =N4- 2(x2+y:)
+(6ai +4a2) :+y (119)

where N4 is an arbitrary constant.

Summing up, we have the following theorem.

TnwORWM IX. If L*(q,O) AO + B is the Legendre transform function of a streamfunction

/’or a steady, plane, aligned, incompressible, Iniiely conducting second-grade auid Sow, then the

aowin the physical plane is given by equations (117) with tan-1 () constant as its streamlines.

TrlEORIM X. If L(q, O) At + B is the Legendre transform function of a s/reamfunction

for a steady, plane, a/igned, incompressible, in6nitely conducting second--grade Buid ttow, then

the flow in the physical plane is given by equations (119) having tan- () constant as its

stream/ines.
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