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ABSTRACT. A study is made of non-Newtonian MHD aligned steady plane fluid flows

to find exact solutions for various flow configurations. The equations of motion
have been transformed to the hodograph plane. A Legendre-transform function

is used to recast the equations in the hodograph plane in terms of this transform
function. Solutions for various flow configurations are obtained. Applications

are investigated for the fluids of finite and infinite electrical conductivity
bringing out the similarities and contrasts in the solutions of these types of fluids.
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1. INTRODUCTION. Transformation techniques are often employed for solving non-linear par-
tial differential equations and hodograph transformation method is one of these technigues which
has been widely used in continuum mechanics. W. F. Ames [1] has given an excellent survey of
this method together with its applications in various other fields. This paper deals with the ap-
plication of this method for solving a system of non-linear partial differential equations governing
steady plane incompressible flow of an electrical conducting second-grade fluid in the presence of
an aligned magnetic field. Recently, A. M. Siddiqui et al [2] used the hodograph and Legendre
transformations to study non-Newtonian steady plane fluid flows. O. P. Chandna et al {3] has also
applied this technique to Navier-Stokes equations. Since electrical conductivity is finite for most
liquid metals and it is also finite for other electrically conducting second grade fluids to which
single fluid model can be applied, our accounting for the finite electrical conductivity makes the
flow problem realistic and attractive from both a physical and a mathematical point of view. We
have also included electrically conducting second grade fluids of infinite electrical conductivity to
make a thorough hodographic study of these fluid flows and to recognize the dawn and future of
superconductivity in science.

We study our flows with the objective of obtaining exact solutions to various flow configura-
tions. We start with reducing the order of governing equations by employing M. H. Martin’s [4]
perceptive idea of introducing vorticity and energy functions. The plan of this paper is as follows:
In section 2 the equations are cast into a convenient form for this work. Section 3 contains the
transformation of equations to the hodograph plane so that the role of independent variables z.y
and the dependent variables u, v (the two components of the velocity vector field) is interchanged.
We introduce a Legendre-transform function of the streamfunction and recast all our equations

in the hodograph plane in terms of this transform function in Section 4. Theoretical development
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of section 4 is illustrated by solutions to the following examples in section 5:

(a) flows with elliptic and circular streamlines
(b) hyperbolic flows

(c) spiral flows

(d) radial flows.

These applications are investigated for the fluids of finite and infinite electrical conductivity

bringing out the similarity and contrasts in the solutions of these two types of fluids.

2. EQUATIONS OF MOTION. The stcady, plane flow of an incompressible second-grade fluid

of finite electrical conductivity is governed by the following system of equations:
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where u,v are the components of velocity field V, H,, H, the components of the magnetic vector
field H, and p is the pressure function: all being functions of z,y. In this system p.p,p*, 0.,

and a; are respectively the constant fluid density, the constant cocfficient of viscosity. the con-
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stant magnetic permeability, the constant electrical conductivity and the normal stress moduli.

Furthermore, K is an arbitrary constant of integration obtained from the diffusion equation
1
curl |V x B — ——curll B
uto

We now introduce the two dimensional vorticity function w, the current density function j

and energy function e defined by
8 Ou . OH, O0H,

% " e oy
e= %pq2 - a;(uVu +vV%) - :1;-(3011 +2a,)| 4% + p- (1)
where ¢% = u? + 2, V2 = L a,ﬂ and

e () o (§) o5+ 2)

into the above system of equations and obtain the following system:

Gu  Ov

= + B =0 (continuity)
Ow 2 *q
3 = pow — pd¢ — a;vV :I n*jH, } (linear momentum)
‘——puw+ll + auViw + p*jHy
uH, —vH, = FL‘J +K (diffusion)
6_& + ?_& =0 (solenoidal)
Oz Oy (2)
a_;i_z_ _ ?3_% = (current density)
& S ici
% By = =w (vorticity)

of seven partial differential equations in seven unknown functions u,v, w, Hy, H2, j and e as
functions of z,y. This system governs the motion of second-grade fluid of finite electrical con-
ductivity. For the motion of second-grade fluid of infinite electrical conductivity, we only replace
the diffusion equation in the above system by uH, — vH; = K.

ALIGNED FLOW. A flow is said to be an aligned or parallel flow if the velocity and the magnetic
fields are everywhere parallel. Taking our flow to be an aligned flow, there exists some scalar
function f(z,y), called the proportionality function, such that

H = f(z,9)V (3)

Introducing this definition of the magnetic vector field in the above system, the aligned flow

is governed by the following system of seven equations
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By = ~Puwtugs +auVie +ptfuj ®)
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& Bu
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is six unknown functions u(z,y),v(z,y),w(z,y), f(z,¥), j(z,y),e(z,y) and an arbitrary constant
K. Once a solution of this system is determined, the pressure and the magnetic functions are
obtained by using the definition of e in (1) and the definition of & in (3) respectively.

3. EQUATIONS IN THE HODOGRAPH PLANE. Letting the flow variables u(z,y),v(z,y) be
such that, in the region of flow, the Jacobian

O(u,v)
J(z,y)==—=#0, 0<|J]<o 11
(59) = g # 11 (a1
we may consider z and y as functions of u and v. By means of z = z(u,v),y = y(u,v), we derive

the following relations

oy oo
" "5 - e )
o_ o oo :
Oz &’ 8y Ou
and 3 _0e) _ 9@)
8z ~ O(z,y) A(u,v) (13)
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Oy o(z,y) O(u,v)
where g = g(z,y) = g(z(u,v),y(u,v)) = g(u,v) is any continuously differentiable function and
8(w,v) _ [8(=9)] 7
(z,y) B O(u,v)

Employing these transformation relations for the first order partial derivatives appearing in
system of equations (4) - (10) and the transformation equations for the functions w, j, f, e defined

by

= J(u,v). (14)

J=J(y) =

w(z,y) = w(z(u,v),y(v,v)) = (u,v),
i(z,y) = j(z(u,0),y(u,v)) = j(u,v),
f(z,y) = f(=2(u,v),y(u,v)) = f(u,0),
e(z,y) = e(z(u,v),y(v,v)) = &(u,v),

the system (4)-(10) is transformed into the following system of seven equations in the (u,v)-plane:

9z Oy
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d(u,v) ~ O(u,v) O(u,v)
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e (18)
3(f,y) Az, f)
3(14 v) tv 3(u,v) =0 (19)
70 _ 8P -
fo+d [ B(u,v)  “B(u,0)] ~’ (20)
=(08z 3y\ _
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for the six unknown functions, z, y, @, €, j, f of ,v and an arbitrary constant K when J, Wy,
W, are eliminated, using (14) and (22).

Once a solution z = z(u,v), y = y(u,v), @ = w(u,v), € = &u,v), j = j(u,v), f =
f(u,v) is determined, we are led to the solution of u = u(z,y), v = v(z,y) and thercfore w =
G(u(2,9),0(z.9)) = w(z,0)s € = e(z,9), j = J(z) f = f(z,y) for the system (4) - (10)
governing the finitely conducting flow.

The above analysis also holds true for infinitely conducting second-grade fluid flows. How-
ever, for these flows, the arbitrary constant K = 0 and equation (7) and its transformed equation
(18) are identically satisfied.

4. EQUATIONS FOR THE LEGENDRE TRANSFORM FUNCTION AND F(U,V). The equa-
tion of continuity implies the existence of a streamfunction ¥(z,y) such that

dy = —vdz + udy or % oy . (23)

Likewise, (15) implies the existence of a function L(u,v), called the Legendre transform function
of the streamfunction ¥(z,y), so that

dL = —~ydu + zdv or % = -y, % =z (29)

and the two functions ¥(z,y), L(u,v) are related by
L(u,v) = vz — uy + ¥(z,y). (25)

Introducing L(u,v) into the system (15)-(21), with J, W;, W5 given by (14), (22) respec-
tively, it follows that (15) is identically satisfied and this system may be replaced by

(52,0Wh) | 8(5c.TWs)
d(u,v) O(u,v)

] - p'foj (26)

—aa((u v;) = pvw — pJW; — ajv] [

(8.9W,) | 2(8.7

S9(%.2) _—pu5+p7W2+a1uJ[ z)] Wi @)

3(u,v) O(u,v) O(u,v)
3 (28)
uro
a( u’-) a( u’-) —
a(f‘ %) +v a(i, %) =0 (29)
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< =[.8%n _o6D| _; (30)
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where now .
- lerr oL #L\?*
/= [5&?5& - (m) ] (32)

Au,v) * 2T B(u,v)

for the five functions L(u,v), @(u,v), &(x,v), j(u,v), f(x,v) and an arbitrary constant K, after
J, Wy, W, are eliminated.
By using the integrability condition

(J FL 9 79’_Li) [J (5:-2) (Jﬂ-a——iazf‘ a)[] (5. )]

Budv B 8v? Bu O(u,v) O(u,v)

ie. 08:;” = 881;;: in (z,y)-plane, we eliminate €(u,v) from (26) and (27) and obtain
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(a) Since j has a constant value —u*0 K for a finitely conducting fluid as given by (28), it
follows that L(u,v), f(u,v) satisfy equations (29), (30) and

[a(%,?w,) . a(%iwz)]

O(u,v) d(u,v)
o |28 T {0 (52, TW:) /8(u,v) +8 (82, TW3) /8w, v)})
! 3(‘“,‘0) (35)
(Bu ,J {8 (3%,TW1) [8(u,v) + 8 (52, TWs) /8(u,v)})

O(u,v)
= p(uWs + vW).

(b) Equation (28) is identically satisfied for an infinitely conducting fluid flow and 7 is given
by (30). Eliminating j from (30) and (34), we find that for these flows L(u,v) and f(u,v) satisfy

equations (29) and
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_ (8, Tw,
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1
I(u,v)
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(“ v)
a2 [0(50TF) 5. IF)
+ I [ Bav) a(u )
+2u*f [vgu—? - ug—vf—’ =0
where F} and F, are defined as
(8, oL,
F =F(uv)= —'3‘(%‘%)‘, = Fp(u,v) = % (37)

Summing up, we have the following theorems for finitely conducting and infinitely conducting

fuid flows:

THEOREM 1. If L(u,v) is the Legendre transform function of a streamfunction of steady
plane aligned flow of an incompressible second-grade fluid of finite electrical conductivity and
f(u,v) is the transformed proportionality function, then L(u,v) and f(u,v) must satisfy equations
(29), (30) and (35) where j(u,v), @(u,v), J(u,v), Wi(u,v), Wz(u,v) are given by equations (28),
(31) to (33).

THEOREM II. If L(u,v) is the Legendre transform function of a streamfunction of the equa-
tions governing steady plane aligned flow of an incompressible second-grade fluid of infinite electri-
cal conductivity and f(u,v) is the transformed proportionality function, then L(u,v) and f(u,v)
must satisfy equations (29) and (36) where j(u,v), @(u,v), J(u,v), Wi(u,v), Wa(u,v), Fi(u,v),
F3(u,v) are given by (30) to (33) and (37).

Once a solution L = L(u,v),f = f(u,v) is found, for which J evaluated from (32) satisfy
0 < |J| < oo, the solutions for the velocity components are obtained by solving equations (24)
simultaneously. Having obtained the velocity components v = u(z,y), v = v(z,y), we obtain
f(z,v) in the physical plane from the solution for f(u,v) in the hodograph plane. We, then,

obtain the vorticity, the current density and the energy functions by using V(z,y) and f(z,y) in
equations (10), (9), (5) and (6). Finally, the pressure function and the magnetic vector field are

determined from (1) and (3).

As various assumed forms for Legendre transform function are best handled if polar coordi-
nates in the hodograph plane are employed, we now develop the results of the above theorems in

polar coordinates (g,8) in the hodograph plane. Expressing
v+ v = qe?, (38)

we have the following transformations:
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0 0 sinf 0 a . 8 cosb 9
—— =cosf— — - — — = sin@- - + —— =

Su dq qg 08 Bv q q 06
O(F,G) _ 9(F*,G*) 0(q,6) _ 19(F*,G*)
O(u,v) - q,6) "d(u,v) q 9(¢,9)
where F(u,v) = F*(q,0),G(u,v) = G*(q,0) are continuously differentiable functions. On using
these relations, and regarding (gq,6) as new independent variables, the expressions for J. &, W;.
Wa,,F1, F; and j in the (g,6) plane, take the forms

-1
o*L* ( oL O*L* oL* 0L
* — 4 2 S
J¢,0) =4q [q ¢ (q 34 + 602) (30 q@q@g)] (40)

(39)

) L, 18 1L
w(g,0) =J oz T o g ] (41)
o (SlneaL + cos @ 8L* .)
1 q 86 W
Wr(q,6) = - 42
a(cosﬁal‘ 98L" )
1 8q 86
W;(q,6) = - 43
8 (co 08L‘ __sin@8L° f‘)
1 q 86
F}(g,0) = - — 44
8 (S oaL' 4 cosé cos 8 8L° f‘)
1 q 066
F;(q,60) = - 45
3 (Cosoa;,' __sind 0813‘ ,f‘)
1*(g,0) = f*w® + J* |sind L L
i"(g,0) = f 3.9)
(46)
s 8L* cos8 OL" ¢«
-cosoa (smqu- + TB_O’f )
9(q,9)

3%(g,8) = —p*0K is taken in (46) if the fluid is finitely conducting. Equations (29), (35) and
(36) are transformed to the (q,8)-plane as

O°L* 0f* 9°L*9f* 19L* of*

5q7 06 9400 0 T q 86 g (47)
d sinO%—%— + Sfﬁ%.-,./‘x‘)
* ind
X F e ein a(4,6)
8L* _ sin 0L Ja. s 48
+cos€a(cosg 54 L 8”Jx) ()
d(q,9)

= pq(cos W, + sin §W7)
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9 (sin%- + sex08L jex+)

ux*t + o l:sinﬂ

9(q,0)
9 (cos 68K~ — 5200LL jeye)
+cosé
d(q,9)

o 9 (sin0%k- + <2285+ Fy) (49)

i 34,6)

8 (cos§2L — S22 L% o Fy) of*
- 3a.9) —wf 5

= pg(cos W, + sin 6W}')

where x* is defined as

X" =x"(q,9) =2 3(a,0)

9 (cos 6% — sine oL W)
9(q,9)

. {a(sino% +eseoll gowy)

(50)

+

Having developed the above transformations, we state the following corollaries which respec-
tively follow from theorem I and II:

COROLLARY 1. If L*(q,6) and f*(q,0) is the Legendre transform function of a streamfunction
and the proportionality function respectively of the equations governing the motion of steady plane
aligned flow of an incompressible second-grade fluid of finite electrical conductivity, then L*(q,6)
and f*(q,0) must satisfy equations (46), (47) and (48) where J*(q,9), w*(q, ), W;(q.6), W5(q,6)
and x*(g,0) are given by (40) to (43) and (50).

COROLLARY II. If L*(q,0) and f*(q,0) are the Legendre transform of a streamfunction and
the proportionality function of the equations governing the motion of steady plane aligned flow of
an incompressible second-grade fluid of infinite electrical conductivity, then L*(q,0) and f*(q,6)
must satisfy equations (47) and (49) where J*(q,0), w*(q,9), W;(q,9), W3(q,6), Fy(q,9), F5(q,6)
and x*(g,6) are given by (40) to (45) and (50).

Once a solution L*(q,8), f*(g,0) is obtained, we employ the relations

oL* + cos§ OL* _ sin0£9_L_‘ +cos€QL—‘ (51
og " q 08 YT g 8 3q )

z =siné

and (38) to obtain the velocity components v = u(z,y), v = v(z,y) in the physical plane.
Following the determination of velocity components u + iv = ge' in physical plane we get f(z,y)
and the other remaining flow variables.
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5. APPLICATIONS. In this section we investigate various problems as applications of Theorem

I and II, and their corollaries.

APPLICATION L. Let
L(u,v) = Au’ + Bv> + Cu+ Dv + E (52)

be the Legendre transform function such that A, B,C, D, E are arbitrary constants and A, B are
nonzero. Using (52) in equations (31) to (33), we get

1 __A+B

T=14B “~ 2aB

Wy =0, W,=0. (53)

We now consider finitely conducting and infinitely conducting cases separately by applying

theorem I and theorem II respectively.

FINITELY CONDUCTING FLUID. Eliminating L(u,v), @(u,v), J(u,v), Wi(u,v), Wai(u,v)
and  j(u,v) from equations (29), (30), (35) by using the expressions for these functions from
(52), (53) and (28), we find that equation (35) is identically satisfied and f(u,v) must satisfy
Aug—vf— - ngui =0
(54)
of

(A+B)f+Ava—+Buaf +2ABKup*a =0

if L(u,v) given by (52) is the Legendre transform function of a streamfunction of finitely con-
ducting fluid flow.

Solving equations (54), we have

2 f W) i-figu) - 4B Kue;  A#-B
fluv) = { AKp*oln(u® +v¥) +9(u) ; A= —B} (55)
where arbitrary functions ¢(u) and ¥(u) must satisfy
{B¢'(u)}v? + {B¢'(w)u? + %(A2 — B%)ug(u)} =0 (56)
and
{¥'(W)}v® + {44K " ou}v + {u*P'(u)} = 0 (57)

Since equations (56) and (57) hold true for every v, and 4 # 0, B # 0, it follows that we
have the following three possible cases:
(i) L(u,v) = A(u® +v?)+ Cu+ Dv+ E, f(u,v) = Cy(u? + v2)~! — AKp*o when
A = B #0 and C is an arbitrary constant.
(i) L(w,v) = Au?+ Bv?+Cu+Dv+E, f(u,v)==24BEC when A#£0, B #0
and A # +B.
(i) L(u,v) = A(u® —v?)+Cu+Dv+E, f(u,0)=C, when A=-B#0, C,
is an arbitrary constant and K = 0.

We now proceed to study these three cases separately.

CASE (I). Using L(u,v) = A(u? +v%) + Cu+ Dv + E in (24) and solving the resulting equations

simultaneously, we get
_ y+C _(z-D
e == (V). e = (51). (58)

Employing (58) in f(u,v) = Cy(u? + v?)~! — AKu*0, we obtain
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f(z,9) =4C1A* [(y + ) + (z - D)*)] ™" — AKp"o. (59)
Substituting for u(z,y),v(z,y) and f(z,y) in equation (3), we have

H(z,y) = {4C14%((y + C) + (z — D)*]™* - AKp"o}

L(_y+tCz-D (60)
247 24 )
Using w = i—, Jj = —Kp*o, equations (58), (59) in (5), (6) and integrating, we determine

e(z,y). Using this solution for e(z,y) and (58) in (1), the pressure function is found to be

(£ KW
p(z,y)—<8A2 - )[(v+C)’+(z-D)2] (61)
+Kp~oCiAtn [(y + C)* +(z - D)*] + Cs

where Cj3 is an arbitrary constant.

CASE (II). In this case, we have L(u,v) = Au? + Bv? + Cu+ Dv + E, f(u.v) = =248hue
and A # £ B. Proceeding as in case (i), we obtain

_(_ytC=z-D
V‘( 2A’2B)

-ﬁ_2ABK;l.’a y+C D-r«
T A+B 2A ' 2B

P(z.y) =545 (W +C) + (= - D]

K2u* g2 ) 21 3a1+2a; (A-B\?
—————2(A+B)[B(y+C) +A(z - D)*] + =5 (AB ) +Cy

where Cy4 is an arbitrary constant.

CASE (III). In this case, L(u,v) = A(u? — v?) + Cu+ Dv 4+ E and f(u,v) = C;. Flow variables

for this case are:
V= (_y+ C D- z)

24 ' 24
H=CV
301 + 202

p(z,y) =Cs - gpﬁ [(y+CY¥ +(z-D)’] + YT

(63)
where Cj5 is an arbitrary constant.

INFINITELY CONDUCTING FLUID. Using the expressions for L, J, @, Wy, Wy, Fy, F, as
given by (52), (53), (37) in equations (29) and (36), we find that f(u,v) must satisfy

of of
Au— —-Bv—= =0
v Ou (64)

Solving equations (64) for f(u,v), we find that f(u,v) = #(u?+v2)if A = B and f(u,v) = Cs
if A # B, where ¢ is an arbitrary function of its argument and Cs is an arbitrary constant.

Therefore, we have the following two cases:
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(i) L(u,v) = A(u? +v2)+ Cu+ Dv+E, f(u,v) = ¢(u® + v?), where ¢ is an arbitrary
function of its argument.

(1) L(u,v)= Au?+ Bv2+Cu+Dv+E, f(u,v) = Cs where C is an arbitrary constant
and B # A.

We now consider these two cases separately.

CASE (I). Without loss of generality, we take f(u,v) = u? + v2. Using L(u,v) = A(u? + v?) +
Cu + Dv + E in equations (24), we obtain

- - (.yt€=z-D
V’_(u,v)_< o1 2A) (65)
and therefore.
1
f@9) =15 (v +C)* + (= - D)’]. (66)
Employing (65) and (66) in (9), we obtain
. 1
i(2,9) = 555 [y + €)Y + (= - D)?]. (67)
Using (65) to (67) in equations in the physical plane, we obtain
9 2 _ytCz-D
ﬁ_4ﬁ[w+0)+u Ln](<5r,2A]
, (68)
e) = (5 - soge ) [+ 0P+ - DY) + 1

where C7 is an arbitrary constant.

CASE (II). Using L(u,v) = Au?+ Bv? 4+ Cu+ Dv+ E where A # B, and f(u,v) = Cs, we obtain
V = (u,0) = ( y+C z - )

24 2B
. _A+B
J(I,y)—mc«s
H=0CV
2 21 . 30y +2a; [A-B)?
plz,y) = SAB [(y+C) +(z - DY’] + — B )
A+ B
- SN CE[By+C) + Az — D)) + Cy

where Cj is an arbitrary constant.
Summing up, we have the following theorems:

THEOREM III. If L(u,v) = Au? + Bv? + Cu + Dv + E is the Legendre transform of a
streamfunction for a steady, plane, aligned flow of an incompressible second-grade fluid of finite
electrical conductivity, then the flow in the physical plane is:

(a) a vortex flow given by equations (58) to (51) when A = B in L(u,v).
(b) a flow with hyperbolic streamlines with flow variables given by (63) when B = — A

in L(u,v).
(c) a flow given by equations (62) with (‘—:g—): + L’{'—?: = constant as the streamlines
when B # +A.

THEOREM IV. If L(u,v) = Au®? + Bv? + Cu 4 Dv + E is the Legendre transform of a
streamfunction for a steady, plane, aligned, incompressible infinitely conducting second-grade
fluid flow, then the flow in the physical plane is:
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(a) a vortex flow with flow variables given by (65)-(68) when A = B in L(u,v).
(b) a flow with flow variables given by equations (69) with SL;T‘;)Z + (—’—'—:-_f—)j = constant
as the streamnlines when B # A in L(u,v).

APPLICATION II: We let
L(u,v) = (Au + Bjv + Cu> + Du+ E (70)

to be the Legendre transform function. where A, B,C,D,E are arbitrary constants and A is
nonzero.

Evaluating J, @, W; and W5, by using (70) in equations (31) to (33), we get

~ 2C
J=-p O=—pp WMi=W=0 (1)

FINITELY CONDUCTING FLUID. Using equations (28), (70), (71) in equations (29), (30),
(35), we find that equation (35) is identically satisfied and f(u,v) must satisfy equations

(2Cu+Av)gv—f- —Au%—i ~0 (712)
2CF + (2Cv - Au)% - Av%u’: = A’Kp'o. (73)

Multiplying (72) by v, (73) by u and subtracting, we obtain

of 2Cu - u

P — * = 7
3o " A tor)! TAKK OGS =0 (74)

Solving equations (72) and (74), we get

<.+ fexp[(Stan~' 2] (u) + & Kputo, C#0
flw,v) = { —[:Kp'a tan~! () +21/)(u), Cc=0

where arbitrary functions ¢(u) and ¥ (u) must satisfy

2
[4ug' (Wl - ACug(u)]o + [A0¢'(w) ~ 20-ug(u)) = 0, )
C+0
and , 2, (9AK L [ 39! (u)) = 0
[t ())e? + [2AKoulo + [u » )
Cc=0.

Equations (75) and (76) hold true for all v if ¢(u) =0 and ¥(u) = D;. where D; is an
arbitrary constant. Therefore, we have the following two cases:
(i) L(u,v)=(Au+B)v+Cu®+Du+E, Flu,v) = ;‘—éKp‘a, when C # 0.
(i) L(u,v) = (Au + B)v + Du + E, f(u,v) = D1.
Using L(u,v) and F(u,v) for the two cases and procecding as in application I, the flow

variables in the physical plane are obtained to be:
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CASE (I).
z—-B 2CB - AD - 2Cz — Ay
V=)= (252, . )
2 .
ﬁ — A K[l. UV
p(z,y) = 2,42 [(z - B)* + (y + D)?]
2,62
- ﬂ—"— [Ay(z — B) + C(z — B)* + ADz) (17)
2+ 2
(601 +4az)—744 +D2
where D, is an arbitrary constant.
CASE (1I).
_(z-B y+D
V“(uwv)—( A A )
H=DV
P 6a; + 4a,
Pz,y)=Ds - 3% [(z = B) + (y + D] + ——— (18)

where Dj is an arbitrary constant.

INFINITELY CONDUCTING FLUID. Using L, J, @, Wy, W, Fi, F; given by (70), (71), (37)
in equations (29) and (36), we find that f(u,v) must satisfy

(2Cu + Av )af ugz -0

(79)
af 6f -0
Y5u " “ov
Solving (80), we obtain
F(u,v) = Dy (80)

where Dy is an arbitrary constant.
We employ L(u,v), f(u,v) given by (70), (80) respectively in (24), (3) and equations in the
physical plane, and obtain

V = (u,v) = (z;B’ZCB—AD—2Cz—Ay)

A2
H =D,V
and
p(z,y) = Ds — ﬂ; (= - B)? + (y + D)?]
_ 2 'C[( —B)+—(z—B)2+Dz] (81)
02

+ (6&1 + 402)——

where Dy is an arbitrary constant.

Summing up, we have the following theorems:

THEOREM V. If L(u,v) = (Au + B)v + Cu? + Du + E is the Legendre transform function
of a streamfunction for a steady, plane, aligned, incompressible, finitely conducting second--grade

fluid flow, then the flow in the physical plane is
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(a) given by equations (77) having Cz? + Azy — ABy + (AD — 2BC)z = coustant as
its streamlines when C # 0 in L(u,v).

(b) a flow with rectangular hyperbolas (z — B)(y + D) = constant as its streamlines
and is given by equations (78) when C = 0 in L(u,v).

THEOREM VI. If L(u,v) = A(u+ B)v+ Cu? 4+ Du+ E is the Legendre transform function of
a streamfunction of a steady, plane, aligned, incompressible, infinitely conducting second -grade

fluid flow, then the flow in the physical plane is given by equations (81) with
Cz? + Azy — ABy + (AD — 2BC)z = constant
as its streamlines.
APPLICATION III: Let
L*(q,0) = F(q); F'(9)#0, F'(q)#0. (82)
Using (83) in (40) to (43) and (51) to evaluate J*, w*, W, W3, z and y, we get

S B ot = ) + Flq)
~ F(q)F"(q)’ F'(q)F"(q)

1 . ,
Wi = —lw"cosaF'(q), W, = ;w"smOF (9),
q

*

z = F'(q)siné, y=-F'(q)cosb (83)
We now study finitely conducting fluid flow and infinitely conducting fluid flow as applica-

tions of corrolaries I and II respectively.

FINITELY CONDUCTING FLUID. Eliminating L*, J*, Wy, W, from equations (46), (47) and
(48) by using (82) and (83), we find that F(q) and f*(q,6) must satisfy

* * q af' . _
flw +m-5q—+Kp0—0 (84)
of* _
2= =0 (85)
w"(q)+F'(q)[‘§f,—,fj—; 0 (86)

so that F(q) is the Legendre transform function of a streamfunction. Here w*(q) is given in (83)
and j* = —Kpu*o has been used for the finitely conducting case. Since equation (86) is identically

satisfied when w*' = 0 and can be rewritten as

wle)  F'g) FU(g)
o) T Filg)  Fig) " ° (87)

when w*'(q) # 0, it follows that we have to deal separately with L*(q,8) = F(q) having variable
vorticity and L*(q,6) = F(q) having constant vorticity.

CASE 1. (Variable Vorticity). From the expressions for z,y in (83). we have

r= Va1 = £F(g), ‘j—; = £F(q). (88)

Integrating (87) twice with respect to ¢, we obtain

w*(q) = Mytn|F'(q)| + M2 (89)
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where M; and M, are arbitrary constants.

Substituting for w*(q) given in (83) into (89), we get

q + T%g = :l:(erlnr + Mzr) (90)
de\ !
since F''(q) # 0 and, therefore, :—; = (;&) .
Integrating the differential equation (90), we get
g== [—A?rlnr+ (g—A%—_——M—l)r+ Mi] (91)
r

where M3 is an arbitrary constant.
Employing (88), (91) in cquations (51) and making use of the definitions u = gcos6, v =

gsinf and w = gt - &y We obtain

- M, 2M; -My\ My
u(z,y)-—y[-i-tn(z’+y’)+( ; )+ ]

v(z,y):z[%l(n(_t2+yz)+(2M2—M1) M, ]

4 22 + y;
M
w(z,y) = -il—tn(zz +y)) + M, (92)

Using expression for w*(g) from (83) in equation (84) and making use of (85), we have
d . Kp*o _, .
4 [qF (9)¢(q) + ---;—Fz(q)] =0, f(g:6) = ¢(q)-

Integrating the above equation, we get

My  Kp'aF'(q)

93
@D 2 (93)

f7(q.0) = $(q) =

where My is an arbitrary constant.
Substituting expressions for F'(q) and ¢ given by (88) and (91) respectively into equation
(93), we obtain

M 2M; - M. -
o) =Me [+ a7+ () 0 4 47) 4 00
- %K#‘ovz’ +y? [—A{i Vz? +y2tn(z? +¢°) (94)

-1
2M, - M M.
+(.___Z___l) z2+y2+___3_.] .

4 Vz? +¢?

We use u(z,y), v(z,y) and f(z,y) given by (92) and (94) in equation (3) and obtain

—-Myy Kp'oy M,z Ku*oz
bid — ' — . 5
(2,9) (;1:2+y2 2 z24y? 2 (%5)
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Using j = —p*0K, equations (92), (94) in equations (5) and (6) and integrating, we get
e(z,y). Employing this solution for e(z,y) and (92) in (1), the pressure function is determined to
be

o) =24 (Mo 4 2 4] [enGe” )

MM, (M M3
+2 [MzMs -SSRy ( 1M - —‘—) (z? +y’)]
2 2 1
M ML Mle] (2 +?)

*[ln(: +y)]+ [2 8

- ’_’_-_"1(22 + %) — uM, tan™? (f)
3 y

2M; — Ml) M;
4

(96)
M;

+ ai M,y [——~-tn(z +y3) + (

+ Kula [%i(n(xz +4?) - -Ji_{(z? + yz)]

+ 3aq +2az [A_Jl:! M3 M, M, ]

4 T (z2+y?)? 124 y?
+ M;

where Mj is an arbitrary constant.

CASE 2. (Constant Vorticity).

Using w* = wp = constant in the expression for w* given in (83), we have
gF"(q) + F'(q) — woF'(q)F"(q) = 0. (97)
Integrating equation (97) with respect to ¢, we get
woF"(q) — 2qF'(q) + 2Ms =0 (98)

where Mg is an arbitrary constant and if wg = 0 then Mg # 0.
Substituting for F'(q) given by (88) into equation (98) and solving for ¢, we obtain

M,
Vz? +y? v+ (99)
[ va? +v’]
The solution for f*(g,6) satisfying equations (84) and (85) is given by (93), where now g is
given by (99).
We proceed as in variable vorticity case and obtain

w M,
u(z’y) =Yy ’_22 + 22 +6y2]

w, M,
e =3+ )

fle.y) =My [2 + 9%+ M)
. 'ty

[T Z LSS

wo(z"' +y?) + 2Ms

H(z.y) = ( Myy | kptoy Mz Kp* az)
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and
woMs M?2 M,
pz.y) =p ~£(z +92) + D tn(2? + ) - e - 0TS
2 2(z? + y?) 2 (100)
2 | My 6a; + 4az)M?
Ku [———ln(z +y%) - -~—«( 2+ TEE ety + M;

where M7 is an arbitrary constant.

INFINITELY CONDUCTING FLUID. Employing the expressions for L*, J*, W, W5, Fy and
F; as given by (83), (84), (44) and (45) in equations (47), (49), we find that F(q) and f*(q,6)
must satisfy

af*

50 = 0 (101)
! ! w‘, ' taf‘
p{w + F [F"] }——2 *f ¥l =0. (102)
Solving (101), (102), we obtain
f*(q,0) = ¢(q) (103)

where ¢ is an arbitrary function of its argument, and F(q) satisfying

W'+ F [F,, (104)

Analysing equation (104), we have the following two cases as in finitely conducting fluid flow:

(1) L*(q,9) = F(q) having variable vorticity.
(2) L*(q,9) = F(q) having constant vorticity.

CASE 1. (Variable Vorticity). Following the same analysis as in finitely conducting fluid flow,
we obtain ¢, u(z,y), v(z,y), w(z,y) as given by (91) and (92). Hence,

f(z,y) = ¢(q) (105)

where ¢ is given by (91).

Proceeding as in previous example, we get

i(2,9) =4(a) [%tn(z’ o)+ Mz]

+4'(q )[ Lin(z? +y )+(2M’4_M‘)

M (106)
; H =1Vz? + y2tn(z? + %)
z +y
2_1%_‘*:_1!1_ Jz2 2__3__
+( 4 ) Tty Vz2 +y?

H(z,y) = ¢(q)(u(z,y),v(z,)) (107)
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p(z.y) =§M1 [Ma + %‘—(z2 +y’)] [tn(z® +4*))°

M, M. MM, — M}
+g[MzM3-— 123+< 1 24 1)(z2+y2)]

M2 5M?
* [ln(z:2 + yz)] + ;—) [Tz + -?‘- - Mle] (z*+4%)
%3(22 +y?)"! — uM, tan™? (;) (108)

2M, - M M.
+alM1[M4—lln(zz+yz)+( 24 ‘)+ “]

z2 + y2

+p* [/]H2d2+/]H1dy]
301 +2(12 94_12 4M32 _ M]M;
(22 +v?)? 22 +9¢?
where M is an arbitrary constant and j, Hy, H, are given by (106), (107).

+ ]+Ma

CASE 2. (Constant Vorticity). In this case, using L*(g,6) = F(q) having constant vorticity w* =
wo, and f*(q,6) = ¢(g), we obtain ¢, u(z,y), v(z,y) given by (99) and in (100), f(z,y) = ¢(q)
where ¢ is now given by (99),

i(z,y) = wod(q) + ¢'(9) [— t +y,] [ vz +y? - m] (109)

H(z,y) = $(9)(u(z,y),v(z,y)) (110)

woMse M? woMs
p(x,y)=p[ 20(2? +9?) + = 3 =tz + ) - 2z +y?) 2

. . . 6ay + 4a; )M
+p [/]szz+/]H1dy] + W+M9

(111)

where My is an arbitrary constant, and j, Hy, H, are given by (109), (110).

Summing up, we have the following theorems:

THEOREM VII. If L*(q,6) = F(q) is the Legendre transform function of a streamfunction
for a stcady. plane, aligned, incompressible, finitely conducting second-grade fluid flow, then the
flow in the physical plane is

(a) given by equations (92), (94) to (96) with (z? + y?) [M1en(z? + y?) + M2320] 4
Matn(z? + y?) = constant as its streamlines, when vorticity is not a constant.
(b) given by equations (100) having wo(z? + y?) + 2Msén(z? + y?) = constant as its

streamlines, when vorticity is a constant.

THEOREM VIII. If L*(q,0) = F(q) is the Legendre transform function of a streamfunction
for a steady. plane, aligned, incompressible, infinitely conducting second--grade fluid flow, the flow
in the physical plane is

(a) given by equations (92), (105) to (108) having (z* +y?) [22 fn(z? + y?) + 227204
%ﬂn(zz + y?) = constant as its streamlines, when vorticity is not a constant.
(b) given by equations (100), (109) to (111) with wo(z? + y?) + 2Mefn(z? + y?) =

constant as its streamlines, when vorticity is a constant.
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APPLICATION IV. Let
L*(q,0) = A6+ B (112)

be the Legendre transform function, where A, B are arbitrary constants and A is nonzero.
We evaluate J*, w*, Wy, W7 by using (112) in equations (40) to (43) and obtain

4

J* = w' =W, =W} =0. (113)

-4

A’
FINITELY CONDUCTING FLUID. Employing (112), (113) in equations (46), (47) and (48), we
find that equation (48) is identically satisfied and f*(q,60) must satisfy

af*  AKp's
0~ g
or _, (114)
8¢
Solving equations (114), we obtain
f*(q,6) = ¢(6)
where an arbitrary function ¢(8) must satisfy
?¢'(0) + Ap*oK = 0. (115)
Equation (115) holds true for all q if ¢'(§) = 0 and AKpu*o = 0. Therefore, we have
f*=1(q,0) = ¢(6) = N (116)
where N, is an arbitrary constant and K = 0.
Using L*(q,0) = A6 + B and f*(g,0) = Ny, we obtain
_ _ Az Ay
V = (‘u,v) = (zz +y2»t2 +y2)
i=0,H =NV
- N, PA _4 Y
p(z,y) = N, A2 + 99 + (61 + 4az) (z’ n yz) (117)

where N is an arbitrary constant.

INFINITELY CONDUCTING FLUID. Employing L*, J*, w*, Wy, Wy, F}* and F3 given by
(112), (113), (44) and (45) in equations (47), (49), we find that f*(q,0) must satisfy

of =0
0q (118)
of* 0
a8 ~
Solving equations (118), we obtain
f*(q,0) = Ns

where N3 is an arbitrary constant.
Proceeding as before, we have the following results:
Az Ay
V= (u,v) = (-———--—:':2 n y”—_zz +y2)
i=0
ﬁ(zy y) = va



HODOGRAPHIC STUDY OF STEADY PLANE FLUID FLOWS 113

N _PA
p(z,y) = N4 2+ 77)

where Ny is an arbitrary constant.

A 2

Summing up, we have the following theorem.

THEOREM IX. If L*(q,6) = A0 + B is the Legendre transform function of a streamfunction
for a steady, plane, aligned, incompressible, finitely conducting second-grade fluid flow, then the
flow in the physical plane is given by equations (117) with tan™! (f) = constant as its streamlines.

THEOREM X. If L*(q,0) = A8 + B is the Legendre transform function of a streamfunction
for a steady, plane, aligned, incompressible, infinitely conducting second--grade fluid flow, then
the flow in the physical plane is given by equations (119) having tan™! (%) = constant as its
streamlines.
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