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ABSTRACT. In this paper, we establish some strongly oscillation theorems for

nonlinear second order functional differential equation

x"(t) + p(t) f(x(t), x(g(t))) 0

without assuming that g(t) is retarded or advanced.
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I. INTRODUCTION.

equation

We consider the second order nonlinear functional differential

x"(t) + p(t) f(x(t) x(g(t))) 0

where p(t), g(t) e C([t ), R) g(t) as t and f(u,v) (R,R) and has the
O

sign of u and v when they have the same sign. We shall restrict our attention to

solutions of (I.I) which exist on some positive half-line A nontrlvial solution x(t)

is called oscillatory if x(t) has an unbounded set of zeros, and otherwise it is

called nonoscillatory. Equation (I.I) is said to be oscillatory if every solution of

(I.I) is oscillatory

Oscillation theory for (I.I) has been developed by many authors. Bradley [I],

Chiou [2], Erbe [3] Gollwitzer [4], Ladas [5], Travis [6], Waltman [7], Wong [8] and

references therein It is wellknown theorem of Wintner [9] and Leighton [I0] that the

linear equation

x"(t) + p(t) x(t) 0

is oscillatory if p(t)dt even p(t) is not assumed nonnegatlve Bradley [I]
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and Waltman [7] demonstrated that the equation

x"(t) + p(t) x(g(t)) 0 (1.2)

is oscillatory if p(t) 0 and p(t) dt Travis [6] constructed a

counterexample showing that the Le[ghton-Wintner oscillation theorem can not be

extended to Equation (1.2) unless p(t) O. The author [II] extended Bradley-Waltman

oscillation theorem to (1.I) i.e. if p(t) 0 and p(t)dt , then (1.I) is

ocillatory.

The purpose of this paper is to establish some strongly oscillation criteria for

(1.1). We are primarily interested in the case when p(t)

are satisfied.

Considering the equation

x"(t) + %p(t) x(t)= 0,

We shall call p(t) a strongly oscillatory coefficient if (1.3) is oscillatory for all

positive %. If p(t) O, Nehari [12] shows that

lira supt/t p(s)ds

is a necessary and sufficient condition for p(t) to be a strongly oscillatory

coefficient. In general, motivated by Nehari, we define as follows: Fzluatlon (I.I)

is said to be strongly oscillatory if the related equation of (I.l)

x"Ct) + Xp(t) fCx(t), x(g(t))) 0 (1.4)

is osillatory for all positive

2. MAIN RESULTS.

For Equation (I.I) the following conditlons are assumed to hold throughout the

paper:

(i) p(t) 0 and there exists h(t) min (g(t), t) such that 0 < k h’(t) where k

is a constant.

(il) there exists m > 0 such that lul implies

lira inf e > O,

where (v) C’(R), v(v) > 0 and ’(v) 0 for v # 0, and lira

where I and 6 are constants.

We begin with a Lemma which needed in establishing our results.

’(v) ) > 0
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LEMMA 2.1. Suppose that for I I > 0 Equation (l.t) has a nonoscillatory
o

solution x(t). Then the following inequality holds for all large t,

w(t) , o t w2(s) ds + loe p(s)ds, (2.1)

where w(t) x’(t)/@(x(h(t))), o and are positive constants.

PROOF. Assume that Equation (1.4)at I I has a nonoscillatory solution
o

x(t) > 0 for t ’ t > 0. A similar proof will hold if x(t) < 0 for t ) t
o o

It is easy to verify that x"(t) < 0 and x’(t) >0 for all large t. Let

w(t) x’(t)/(x(h(t))), then

w’(t) -hoP(t) f(x(t), x((t))) #’(x(h(t)))x’(h(t))h’(t)
(x(’h(-t) q(x( h(f) w(t).

Since x’(t) > 0 for large t, llm x(t) exists either as a finite or infinite limit.

If llm x(t) e is finite, then

[(x(t), x(g(t))) f(=,=)

t

If lira x(t) ==, then by (ii) we have that

f(x(t), x(g(t)))
)

(x( g (t)

for large t. In either case, for sufficiently large t, we have that

f.(x(t)_, x(g(t))) e where e rain (e e2).(x(g(t)))
(2.2)

Since x(t) is increasing, for large t we have that

p(t) f(x(t), x(.g(t))) ) (t) f(x(t), x(g(t)))
logP(t)(x(h(t))) P #(x(g(t)))

and in view of x"(t) < 0 for large t and (ii) we see that

’ (x(h(t)))x’ (h(t))h’ (t)
@(x(h(t))) w(t) )

’(x(h(t)))x’(t)h’(t)
#(x(h(t)))

, k6w2(t) OW2(t)

Thus for t ) t ) t
o

w’(t) + o w2(t) + I e p(t) 0
o

(2.3)

and

w’(t) + o w2(t) O. (2.4)

From (2.4), we have that

d
rwrd--:- (- -I’’) + ot) O.
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Integrating the above inequality from t to t we obtain that

0 < w(t)
ot + b

(2.5)

where b
W(tl

kt From (2.5) we have that

lira w(t) O. (2.6)

Integrating (2.3) from t to t, then letting t we obtain that (2.1) holds for

all large.

We introduce the function sequence [Pn(t)}, n 0,1,2,...,

defined as follows:

Po(t) p(t), Pl(t) It Po(s)ds’

Pn+i (t) Pn (s) ds, n 1,2,3 ..... (2.7)

THEOREM 2.2. Assume that one of the following conditions holds,

(I I) there is an integer m such that Pn(t) is defined for n- 1,2,...,m, and

lim sup tPm(t) ; (2.8)
t /

(12 there is an integer m 2 such that Pn(t) is defined for n 1,2,..., m-l,

but Pm(t) does not exist, i.e.

" Pm-12 (t) dt (R).

hen equation (1.1) is strongly oscillatory.

PROOF. Assume to the contrary that Equation (1.4)at X-X > 0, has a non-
o

oscillatory solution x(t) > 0 for t t 0. A similar argument holds when x(t) < 0
o

for t t O. Let w(t) x’(t)/(x(h(t))). As in the proof of Lemma 2.1, we can
o

obtain

w’(t) + ow2(t) + X (t) 0, t t t (2.9)
o Po o

Suppose m I. Define u (t) ow(t); then
o

u2(t) + oPo(t) 0 t t t
o

(2.10)ut(t) +
O O

where k Go. However, by a well-known theorem of Wintner [13] this implies the
o o

equation

y"(t) + goPo(t)y(t) 0 (2.11)

is nonosclllatory. This contradicts the fact that the condition (I I) implies

Po(t) is a strongly oscillatory coefficient.

If m > I, integrating (2.10) from t to t we obtain
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,J (t) u(t + ft u
2

(s)ds +
rt

Po(S)ds 0
o t o o Jt (2.12)

Since lim u (t) lim ow(t)=0, from (2.12) we get
o

U (t) U (t) + Op (), t )t t,O
(2.13)

where Ul(t)- Jt u-(s)ds’o- Then (2.13) implies that

2
Ul(t) Uo(t) - u(t)- 2oUl(t)p

.2 2
(t) opl(t).

Hence
2

u(t) + u21(t) + iPl(t) ; 0, (2.14)

where 51 2o
If m 2, then by the Neharl theorem, the condition (I[) implies equation

2
y"(t) + IPi (t)y(t) 0 (2.15)

is oscillatory, contradicting (2.14).

If the condition (1
2

is satisfied, then by the Leighton-Wintner theorem we have

that equation (2.15) is oscillatory, again a contradiction.

When m > 2, we obtain inductively that

u’ (t) + u
2 2 (t) 0 t (2.16)

m-I m-I (t) + m-lPm-I

m-I m-2
is a constant and Pm_l(t) is

defined by (2.7). Applying the Wintner theorem again, it follows that equation

2 (t)y(t) 0 (2.17)y"(t) + Ce_tPm_t
is nonosctllatory. But this contradicts again the fact that the condition

(I I) or (1
2 implies that equation (2.17) is oscillatory. The proof is thus complete.

REMARK. Theorem 2.2 includes Theorem 2.2 in [6] as a special case, i.e.

(u)=u and m t.

Consider the function sequence {qn(t,,)}, n--l,2,..., which is defined as

follows:

2(s,q)ds + qo(t q),qo(t,) r p(s)ds, ql(t,,) qo

2
qn (t’’q) " qn-I (s,,q)ds + qo(t,D), t to, n 2,3 (2.18)

where $ and q are positive constants.
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THEOREM 2.3. For all positive constants and q assume that any one of following

conditions is satisfied:

(II I) there is a positive integer m such that qn(t,,n) is defined for

n-l,2,..., m-l, but qm(t,,) does not exist;

(II2) qn(t,,n) is defined for n=l,2,..., but the function sequence (2.18) is

not convergent for all large t.

(If 3) the sequence (2.18) is convergent and llm qn(t,,n) q(t,,n), but

q(t,,n) L2(t ,’). n /

0

Then equatlon (I.4) is strongly oscillatory.

PROOF. ssume that Equatlon(1.Z) atA=A > 0, has a solutlon x(t) > 0 for
O

t t 0. A similar proof will hold if x(t) < 0 for t t Let
O O

w(t)=x’(t)/(x(h(t))). From Lemma 2.1 we can obtain (2.1). It follows that

w(t) qo(t,o), where n = . Hence
O O

2 2
w (t) qo(t,no) t t to. (2.19)

Suppose that (lII) holds. If m--I from (2.1), (2.19) implies tha:

ql(t’o’no o qo(S’no )ds / qo(t’no w(t), t ) t

where o. This is in contradlclton to the nonexistence of o..
O

If m > I, from (2.1) and (2.19) we get that qm_l w(t). Hence

ft qm-1(s’No) ds w2(s) ds < ". Applying (2.1) we have that

qm(t o o ft 2 (s o no)dS + qo (t Uqm-1 O

and we arrive at a contradiction of (Ill).
Suppose that (I12) holds. From (2.18) and (2.19), we conclude that for all

large t

qn-1 (t’o’no) qn(t’o’no w(t), n-l,2 ...... (2.20)

Therefore llm qn(t,o,no) exists and has a flnte limit. But this constradlcts

the fact that qn(t, n
o

is not convergent.

Suppose that (If3) holds. By (2.20),

llm qn(t’o’no) q(t,o,no) w(t). (2.21)

n
2

w
2

Using (2.21), we have that ft q (S’o’o)dS (s)ds < which contradicts the

condition (113). This completes the proof.
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THEOREM 2.4. Asse that

du du
(u)- < and f_ (u) < ’ a > 0. (2.22)

Further assume that sequence (2.18) for all positive constants and satisfies any

one of the following conditions:

(III I) there is a positive integer m such that qn(t,,) is defined for

n=0,1,2...m, and

Jt qm (s’ ,rl)ds ;
o

(1112 qn(t,,n) is defined for n=0,1,2,...,and llm qn(t,,n) q(t,,q)
n

exists and satisfies

q(s,E,r)ds (R).

0

Then Equation (I.I) is strongly osillatory.

PROOF. Assume that Equation (1.4)at k=k > 0, has a nonoscillatory solution
o x’(t)x(t) > 0 for t t The case x(t) < 0 is handled similarly. Let w(t)

o (x(h(t)
By Lemmma 2.1, we find that (2.1) holds.

Suppose that (III I) holds, then, as proof of Theorem 2.3,

or

qm(t’o’no) o t q2(s’o’ qo)dS + qo(t,o ’qo w(t)

x’ (t) x’ (h(t)h’ (t)
qm(t’o’o #(x(h(t))) k#(x(h(t)))

(2.23)

From (2.22) and (2.23), we have that

lim t x(h(t))

t
qm(t’o ’no)ds lira fx(h(t ))

o o

This contradicts condition (llll).

du
k(u)

Suppose that (1112 holds, then it follows from (2.23) that

x’ (h(t)h’ (t) x’ (h(t)h’ (t)
lira q =t ,no)o k(x(h(t)))

namely q(t6o,no) k(x(h(t)))
m

He nce

ft x(h( du
q(S’o’no)dS lira fx(h(t )) (u)I im

o t o

which is again a contradiction, and the proof of the theorem is complete.

Equation (I.i) is said to be strongly bounded oscillatory if all bounded

solutions of Equation (1.4) for any %e(O, =) are oscillatory.
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F.ow he proof of Therem (2.4), we see that the following result holds.

COROLLARY 2.5. Assane that the condition (Ill 1) or ([112 holds, then Equation

(I.I) is strongly bounded oscillatory.
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