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ABSTRACT. In this paper, we define and investigate the continuous retraction and the -continuous fixed

point property. Theorem of Connell 11] and Theorem 3.4 of Arya and Deb [2] are improved.
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0. INTRODUCTIQN..
The notion of0-continuous functions was flu’st introduced by Fomin i]. After that, this nodon has been

widely investigated in the literature. By utilizing 0-continuous functions, Arya and Dcb [2] defined and

investigated the 0-continuous retraction, the 0-continuous fixedpointproperty and the 0-continuous homotopy.

On the other hand, in [3] and [4] the present authors have independently introduced the notion of 8--continuous

functions. The purpose of this paper is to apply 8-continuity to the retraction and the fixed point property. In

Section 2, we study the retraction of a topological space by 8-continuous functions. Section 3 deals with the

fixed point property in relation to 8-continuous functions. The main results of this paper are Theorems 3.2 and

3.3 which improve Theorem of I] and Theorem 3.4 of [2], respectively.



46 F. CAMMAROTO AND T. NOIRI

1. PRELIMINARIES.
Throughout the present paper, spaces will always mean topological spaces on which no separation

axie:ns are assumed unless explicitly stated. We shall denote a topological space by (X, x) or simply by X.

Let (X, x) be a space and A a subset ofX.The closure ofA and the interior ofA are denoted by , and ’ or

simply , and k), respectively. A subset A ofX is said to be regular open (resp. regular closed) if A=(,)
(resp. A A" ). The family of regular open sets ofX will be denoted by RO(X). A point x of X is said to

be in the S- closure [5] ofA, denoted by CI(A), if AV# for every V RO(X) containingx. A subset

A is said to be 8-closed_[5] if A=CIn(A). The complement of a -closed set is said to be 5-open. The

topology on X which has RO(X) as a basis is called the.semi-regularization of x and is denoted by :’. It is

obvious that every element of ’" is a 5 open set of (X, x). A space (X, x) is said to be semi-regular if

x :’. A space (X, x) is said to be almost-regular [6] if for each regular closed set F and each

x X F, there exist open sets U and V such that x U, F C V and. UrV
DEFINITION 1.1. A function f" (X, x)--- (Y, o) is said to be -continuous 3, 4 (resp. almost-continuous

7 ], O-continuous and weakly continuous [8] if for each x X and each open neighborhood V of

f (x), there exists an open neighborhood U of x such that f U C V (resp. f U C V, f U C V

and f (U) C V).
REMARK 1.1. It is shown in 2, 3, 9 that the following implications hold: 8-continuous almost-

continuity = O-continuous =# weak-continuity, where none of these implications is reversible.

2. _5- CONTINUOUS RETRACTIONS.
Arya and Deb [2] defined a subset A ofa space X to be a 0-continuous retract ofX if there exists

a 0-continuous function f" X ---) A such that f/A is the identity on A. We shall similarly define a

5-continuous retract.

DEFINITION 2.1. A subset A of space X is called a -continuous retract of X if there exists a

5-continuous function f" X ---) A such that f is the identity on A, that is, f(x =x for every x A.

And such a function f is called a 8-continuous retraction.

REMARK 2.1. It is obvious that every &continuous retract is a 0-continuous retract. However, every

i-continuous retract is not necessarily a continuous retract as the following example shows.

EXAMPLE 2.1. LetX {a, b, c, d} and {,X, {a}, {a, b}, {a, c}, {a, b, c} }. Let A {a, b, c} and

f" (X, x (A, x / A) be a function defined as follows" f(a) a, f(b) b, f(c) c and f(d) d. Then A is a

-continuous retract ofX but it is not a continuous retract ofX since f-I a }) x for a x / A.
REMARK 2.2. In Example 3.1 of [2], Arya and Deb showed that every 0-continuous retracts is not

necessarily a continuous retract. However, this example is false. The 0-continuous function f" X---) A

in [2,Example 3.1] is necessarily continuous since the subspace A is discrete and regular. Since every

5-continuous function is 0-continuous, Example 2.1 also shows that every 0-continuous retract is not a

continuous retract.

We shall investigate relationships between -continuous retract and continuous retract.

PROPOSITION 2.1. If X is a semi-regular space and A is a continuous retract of X, then A is a

5-continuous retract of X.
PROOF. This follows from the fact that a continuous function from a semi-regular space is &continuous

[3, Prop. 1.5].
LEMMA 2.1. If A is either open or dense in a space X and Ve RO(X), then VC3A is regularopen

in the subspace A.
PROOF. If A is dense in X, then this follows from [10, p. 175, B)]. Next, suppose that A is open in X and

Ve RO(X). Then, we have

V A(A)=(A A)" (A)= V AA)" VAA.
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Moreover, we haveVA c A D (V A )’ A V A .On the other hand,
*__

-VA AC (vX)’q A VA WA.

Th.erefore, we obtain Vr(A)= VrhA and henceV A is regular open in A.

PROPOSITION 2.2. Let X be a semi-regular space and A either open or dense in X. Then A is a

continuous retract of X if and only if A is a i-continuous retract of X.

PROOF. From Lemma 2.1, for A either open dense and X semiregular, x x* and

(’/A) (’*/A) C__ (’/A)* C__ (r/A).
Thcrcforc, A is scmircgular so that f" X A is &continuous if and only if it is continuous.

PROPOSITION 2.3. Lct X be a spacc and A a scmi-rcgular (rcsp. almost-rcgular) subspacc of X. If A is

a 5-continuous (rcsp. continuous) retract of X, thcn it is a continuous (rcsp. continuous) rctract of X.

PROOF. Lct f’X A be a 5-continuous rctraction and A be. scmi-rcgular. Evcry 5-continuous

function into a scmi-rcgular spacc is continuous [3, Prop. 1.4 ]. Thcrcforc, A is a continuous rctract of X.

Evcry continuous function into an almost regular spacc is &continuous [3, Prop. 1.8]. Thcrcforc, thc sccond

part follows.

THEOREM 2.1. If A is a -continuous retract of X and B is a -continuous rctract of A, thcn B is

a &continuous retract of X.
PROOF. Lct f" X.--> A and g A---B bc 5-continuous retractions. Thc compositc function g o f" X--- B

is 5-continuous [3, Prop. 3.2]. Moreover, we have g o f) (x) g (f(x)) g(x x for every

x e B C A. Therefore, g o f" X.-o B is a 5- continuous retraction and hence B is a 5- continuous

retract of X.
THEOREM 2.2. A subset A of a space X is a 5- continuous retract ofX if and only if for every space Y,

every 5- continuous function f" A.-o Y can be extended to a 5- continuous of X into Y.

PROOF. Necessity. Let g: X A be a i- continuous retraction. Let Y be any space and f" A---> Y be

any 5-continuous function. Then composite function fo g" X---> Y is i-continuous [3, Prop. 3.2]. Moreover,

we have (f o g) x f (g(x)) f(x for every xe A. Therefore, f o g is an extension of f.

Sufficiency. Let A A ..--> A be the identity function on A. Then iA is - continuous and hence by

the hypothesis there exists a & continuous function g" X--o A such that g/A A. Therefore, A is a

5- continuous retract of X.
THEOREM 2.3. If A is a 5- continuous retract of a Hausdorff space X, then A is 5-closed in X.

PROOF. Let f: X A be a 5- continuous retraction. Suppose that A is not i-closed in X. There exists

a point x e C1, (A) A. Since x e A, f(x : x and hence there exist open sets U and V such that x e U,

f(x e V and U V hence U V .Let W be any regular open set containin.g x. Then UW is

a regular open set containing x. Since x e CI (A), U W A : q). Let a e U W A, then

f(a) ae U and hence f(a) e V. This shows that f(W) q V for any regular open set W containing x.

This contradicts the fact that f is 5-continuous.

3. THE 5-CONTINUOI,/S FIXED PQINT pRQPERTY,

Arya and Deb [2] defined a space X to have the 0-continuous fixed point property if, for every

0-continuous function f" X-- X, there exists an x e X such that f(x x. We shall define the 5-continuous

(resp. weakly continuous) fixed point property as follows

DEFINITION 3.1. A space X is said to have the 5-continuous (resp. weakly continuous fixed point

property, briefly denoted by i cFPP (resp. wcFPP), if for every 5-continuous (resp. weakly continuous)

function f" X---> X, there exists an x e X such that f(x x.

REMARK 3.1. It is obvious that a space with the wcFPP has necessarily the 0-continuous fixed point

property and a space with the 0-continuous fixed point property has both the FPP and the fixed point

property.
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We give an example that a space ,,, lth the fixed point property ned not have the 8cFPP.

EXAMPLE 3.1. Let X a, b, c and z q, X, a }, a, b }, a, c }. ]’hen the space (X, ,) has the fix

point property [2, Example 3.2]. Now, let f:(X, ) + (X, z) be a function defined by f(a) f(c)=b and f(b).

Then f is S-continuous but does not a fixed point. Therefore, (X, ) does not have the FPP.

RERK 3.2. We need the following two spaces which we were unable to obtain:

(1) a space which has FPP but ds not have the fixed point property.

(2) a space which has the 0cFPP but does not have the wcFPP.

TOM 3.1. t A either open or dense in a space X. "if X has the FPP and A is a &continuous

rewact of X, then A has the FPP.
PROOF. t f: A + A any S-continuous function. Since A is a 6-continuous rcmct of X, by

Theorem 2.2 f can extended to a &continuous function F X A. Let A+ X the inclusion. If V

is a regul open set of X, then j;(V) A V is regular open in the sdbspace A by Lemma 2.1.Therefore,

F- 0 (V))= 0oF)(V) is &open in X and hencejoF:X +X is &continuous. Since X has the FPP,
x 0oF) (x) =j (F(x)) =j (f(x)) f(x) for somex e AC X. This shows that A has the FPP. The following

theorem is a slight mification of Theorem of 11 ].
TOREM 3.2. t (X, ) an almost-regular space with the 8cFPP. If is a topology for X

onger than and (*)= () tbr eve G e o, then X, o) has the fix point property.

PROOF. Suppose that f: (X, ) + (X, ) is any continuous function. t g (X, )+ (X, z) and

h (X, g) + (X, z) the functions defined by g(x h(x f(x tr eve x e X. Let (X, z) _) (X, )

the identity function. en, since C , is an open b0ection. Moreover since f o g is continuous, g

is contuous. Next,we shall show that h is &continuous. Let x e X and h(x )e Ve RO(X, ). Since (X, )

is Nmost-regul, there exists G e such that h(x) e G C () C V. Smcc g is continuous, ga (G) e oand

h- (G) P (G) g [G). Therefore, h (G) f (G) e o and hence, utilizing continuity of f we obtNn

{*) e Ue RO X, and h C V Ths shows that h s 8 continuousNow, wesetU=h-(G) ,then we have x )" (U) ".

Since (X, ,) hase FPP, there exists x e X such thatx h(x f(x ). This shows that (X, o) has the fix

point property.

COROLLARY 3.1 (Connell 11 ). Suppose (X, ,) is a regular space with the fix point property. If o

is a topology for X, zC gd() G (*) for each G e , then (X, o) has the fix point property.

PROOF. It is shown in [3, Corollau 1.8] flat if Y is regular, then f X Y is 8-continuous if and only

if is continuous. Since eveu regular space is ahnost regular, this is an immediate consequence of theorem 3.2.

We shl give a lemma which will used in the proof of tte final theorem.

LEMMA 3.1. t f X+Y and g Y Z be functions:

(1) f is wetly continuous f and only if f- (V) C f (V) for each open set V of Y.

(2) If composite g o f:XZ is weakly continuous and g Zis an open bijection, then f is wey
continuous.

PROOF. Statement (1) is eorcm 7 of[ 121. We shall show Statement (2) by utilizing Statement (1). Let
V any open set of Y. Since g is open, gCV) is open in Z and

(g o 0 (g(V)) C (g o - (g(V)). Since g s bjecnve, (g o f) (g(V)) f (V). Moreover, since g is open,

(g o 0 (g(V)) f (g (g (V))) C f gi- ’g(9)) f (V).Consequently, we obtain "; (V) C q CV) and hence

f is we&ly continuous.

e following theorem is an improvement of [2. Tlcorem 3.4] and 11, Theorem !.
THEOM 3.3. Let (X, z) be a regul space with the fixed point property. If is a topology for X stronger

than z and() (
tbr eveu Ge , en (X, o) has the wcFPP.

PROOF. t f;(X, ) (X, o) be any weakly cotinuous function. Let g;(X, o)+ (X, ),
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h:(X, ’r) (X, "r) and i: (X, ’r) (X, o) be the same functions as in Proof of Theorem 3.2. Since

:f=i o g is weakly continuous and is an open bijection, g is weakly continuous by Lemma 3.1. Since

(X, :) is regular, g is continuous [8]. Next, we shall show that h is continuous. Let x e X and V be an open

set of (X, ") containing h(x). Since (X, x) is regular, there exists G e a: such that h(x G C ()C V.

Since g is continuous, g-I (G) o and ha(G) fl(G) g (G). Therefore, we have h (G) fl (G) o.

Sind6"f is weakly continuous, by Lemma 3.1 f -t)C f (0o (05). It follows from the same argument as in

Proof of Theorem 3.2 that h is continuous. Since (X, a:) has the fixed point property, there exists a point

x X such that x h(x f(x ). This shows that f has the fixed point property.

COROLLARY 3.2 (Arya and Deb [2]). If (X, a:) is a regular space with the fixed point property and if o

((o)___is a topology for X stronger than x such that ( ()
for each G e , then (X, a) has the 0-continuous

fixed point property.
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