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ABSTRACT. In this paper, we define and investigate the 8-continuous retraction and the 8-continuous fixed
point property. Theorem 1 of Connell [11] and Theorem 3.4 of Arya and Deb [2] are improved.
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0. _INTROD N.

The notion of 8-continuous functions was first introduced by Fomin [1]. After that, this notion has been
widely investigated in the literature. By utilizing 8-continuous functions, Arya and Deb [2] defined and
investigated the 6-continuous retraction, the 8-continuous fixed point property and the 6-continuous homotopy.
On the other hand, in [3] and [4] the present authors have independently introduced the notion of 8-continuous
functions. The purpose of this paper is to apply 8-continuity to the retraction and the fixed point property. In
Section 2, we study the retraction of a topological space by §-continuous functions. Section 3 deals with the
fixed point property in relation to 8-continuous functions. The main results of this paper are Theorems 3.2 and
3.3 which improve Theorem 1 of [11] and Theorem 3.4 of [2], respectively.
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1. PRELIMINARIES.

Throughout the present paper, spaces will always mean topological spaces on which no separation
axicms are assumed unless explicitly stated. We shall denote a topological space by (X, 1) or snmply by X.
Let (X, ‘c) bea space and A a subset of X.The closure of A and the interior of A are denoted by Arand A* (or
simply A and A) respectively. A subset A of X is said to be regular open (resp. regular closed) if A= (A)
(resp. A= N ). The family of regular open sets of X will be denoted by RO(X). A point x of X is said to
be in the 3- closure [5] of A, denoted by CI(A), if ANV = @ for every Ve RO (X) containingx. A subset
A is said to be 8-closed [5) if A=Cl(A). The complement of a 5-closed setis said to be 8- open. The
topology on X which has RO(X) as a basis is called the_semi-regularization of © and is denoted by ©°. It is
obvious that every element of 1"is a &- open setof (X, ). A space (X, 7)is said to be semi-regular if
t= 1" A space (X,1) is said to be almost-regular [6] if for each regular closed set F and each
x e X -F, there exist open sets U and V such thatx ¢ U, FC V and-UNV =0

DEFINITION 1.1. A function f:(X,1)—(Y,oc)issaid tobe -continuous [ 3,4 ] (resp. almost-continuous
[ 71, 8-continuous [ 1 ] and weakly continuous (8] ) if for each x e X and each open nexghborhood V of
f (x), there exists an open neighborhood U of x such that f(U )C V (resp. f(U) C Vv, f(U)C v
and f(U)C V).

REMARK 1.1. Itis shown in [ 2, 3, 9 ] that the following implications hold: 8-continuous = almost-
continuity = ©-continuous => weak-continuity , where none of these implications is reversible.
2. 8- CONTINUQUS RETRACTIONS.

Arya and Deb [2] defined a subset A of aspace X tobea 68-continuous retract of X if there exists
a 0-continuous function f:X — A such that f/A is the identity on A. We shall similarly define a
S-continuous retract.

DEFINITION 2.1. A subset A of space Xis called a &-continuous retract of X if there exists a
8-continuous function f: X — A such that fis the identity on A, thatis, f(x )=x foreveryx € A.
And such a function f is called a &-continuous retraction .

REMARK 2.1. It is obvious that every &-continuous retract is a 8-continuous retract. However, every
&-continuous retract is not necessarily a continuous retract as the following example shows.

EXAMPLE 2.1. Let X = {a, b, c,d} and t = {®, X, {a}, {a, b}, {a,c), (a,b,c}}. Let A = {a, b,c} and
f:(X,1) > (A, 1/A) be a function defined as follows : f(a) = a, f(b) = b, f(c) =c and f(d) =d. Then Aisa
d-continuous retract of X but it is not a continuous retract of X since f!({a}) ¢ t for {a}e T/ A.

REMARK 2.2. In Example 3.1 of [2], Arya and Deb showed that every 6-continuous retracts is not
necessarily a continuous retract. However, this example is false. The 6-continuous functionf: X — A
in [2, Example 3.1] is necessarily continuous since the subspace A is discrete and regular. Since every
8-continuous function is 0-continuous, Example 2.1 also shows that every 6-continuous retract is not a
continuous retract.

We shall investigate relationships between 8-continuous retract and continuous retract.

PROPOSITION 2.1.If X is a semi-regular space and A is a continuous retract of X, then A is a
&-continuous retract of X.

PROOF. This follows from the fact that a continuous function from a semi-regular space is §-continuous
[3, Prop. 1.5].

LEMMA 2.1. If A is either open or dense in a space X and Ve RO(X), then VN A is regular open
in the subspace A.

PROOF. If A is dense in X, then this follows from [10, p. 175, B)]. Next, suppose that A is open in X and
Ve RO(X). Then, we have
VAADN = VA AN AY Ao (VAANA) =VAANA.
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Moreover, we have VAANA (VN AYA A = VN A .Onthe other hand,
VAANAC (VNAYN A = VNA = VDA,
Therefore, we obtain WA(A) = VNA and hence VN A isregularopenin A .

PROPOSITION 2.2. Let X be a semi-regular space and A either open or densc in X. Then Aisa
continuous retract of X if and only if A is a &-continuous retract of X.

PROOF. From Lemma 2.1, for A either open dense and X semiregular, T = t* and

(t/A) =(*/A) C(t/A)*C (1/A).
Therefore, A is semiregular so that f: X — A is 8-continuous if and only if it is continuous.

PROPOSITION 2.3. Let X be a space and A a semi-regular (resp. almost-regular) subspace of X. If Ais
a 8-continuous (resp. continuous) retract of X, then it is a continuous (resp. 8-continuous) retract of X.

PROOF. Let f: X — A bea §-continuous retraction and A be semi-regular. Every 8-continuous
function into a semi-regular space is continuous [3, Prop. 1.4 ]. Therefore, A is a continuous retract of X.
Every continuous function into an almost regular space is 3-continuous [3, Prop. 1.8]. Therefore, the second
part follows.

THEOREM 2.1.If A is a §-continuous retract of X and B is a 8-continuous retract of A, then B is
a o&-continuous retract of X.

PROOF. Let f: X— A and g: A—B be 3-continuous retractions. The composite functiongof: X— B
is S-continuous [3, Prop. 3.2]. Moreover, we have (gof) (x) = g(f(x)) = glx) = x for every
x € BC A. Therefore, gof:X— B is a 8- continuous retraction and hence B is a &- continuous
retract of X.

THEOREM 2.2. A subset A of aspace X isa 8- continuous retract of X if and only if for every space Y,
every 8- continuous function f: A— Y can be extended to a 3- continuous of X into Y.

PROOF . Necessity . Let g: X —» A be a 8- continuous retraction. Let Y be any space and f: A— Y be
any §- continuous function. Then composite function fog:X— Y is §-continuous [3, Prop. 3.2]. Morcover,
we have (fo g) (x) =f(g(x))=f(x) for every x= A. Therefore, f 0 g is an extension of f.

Sufficiency. Let in : A —» A be the identity function on A.Then i is & continuous and hence by
the hypothesis there exists a 8- continuous function g:X — A such that g/ A =i Therefore, A isa
8- continuous retract of X.

THEOREM 2.3. If A is a 8- continuous retract of a Hausdorff space X, then A is d-closed in X.

PROOF. Let f: X— A be a §- continuous retraction. Suppose that A is not 8-closed in X. There exists
apoint x ¢ Cl;(A)—A. Since x € A, f(x) #x and hence there exist open sets U and V such that Xe U,
f(x)e V and UN V=0 hence U ﬁV ®.Let W be any regular open set contammg x . Then Uf\W is
a regular open sct contammg x. Since x € Cl,(A), [Un W] NAzd. Letae [U NW]N A, then

f(a) = ae U and hence f(a) ¢ V This shows that f(W) ¢ V for any regular open set W containing x.
This contradicts the fact that f is §-continuous.
3. THE § -CONTINUQUS FIXED POINT PROPERTY.

Arya and Deb [2] defined a space X to have the 0-continuous fixed point property if, for every
8-continuous function f: X — X, there exists an x e X such that f(x ) =x . We shall define the 8-continuous
(resp. weakly continuous) fixed point property as follows :

DEFINITION 3.1. A space X is said to have the §-continuous (resp. weakly continuous ) fixed point
property, briefly denoted by & cFPP (resp. wcEFPP), if for every &-continuous (resp. weakly continuous)
function f:X— X, there exists an x e X such that f(x)=x.

REMARK 3.1. It is obvious that a space with the wcFPP has necessarily the 8-continuous fixed point
property and a space with the ©-continuous fixed point property has both the 8cFPP and the fixed point

property.
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We give an example that a space with the fixed point property ned not have the 3cFPP.

EXAMPLE 3.1. Let X ={a,b,c} and 1= {d, X, {a}, {a, b}, {a, ¢} }. Then the space (X, 1) has the fixed
point property [2, Example 3.2]. Now, let {:(X, 1) = (X, 1) be a function defined by f(a) = f(c)=b and f(b)=c.
Then f is &-continuous but does not a fixed point. Therefore, (X, T) does not have the 3¢cFPP.

REMARK 3.2. We necd the following two spuces which we were unable to obtain:

(1) a space which has 8cFPP but does not have the fixed point property.
(2) a space which has the OcFPP but docs not have the wcEFPP.

THEOREM 3.1. Let A be either open or dense in a space X. If X has the 8cFPP and A is a §-continuous
retract of X, then A has the 8cFPP.

PROOF. Let f: A — A be any &-continuous function. Since A is a S-continuous retract of X, by
Theorem 2.2 f can be extended to a §-continuous function F: X— A. Let j: A— X be the inclusion. If V
is aregular open set of X, then ji(V) = ANV isregular open in the subspace A by Lemma 2.1.Therefore,
F1G1(V)) = (oF)y! (V) is &-open in X and hence joF : X — X is &-continuous. Since X has the 8cFPP,
x =(joF) (x)=j (F(x))=j (f(x)) =f(x) for somexe AC X. This shows that A has the 8cFPP. The following
theorem is a slight modification of Theorem 1 of [11].

THEOREM 3.2. Let (X, 1) be an almost-regular space with the 3cFPP. If o is a topology for X
stronger than T and Gm: G for every Ge o, then (X, o) has the fixed point property.

PROOF. Suppose that  f: (X, 0) — (X, o) is any continuous function. Let  g: (X, 0)— (X, 1) and

h: (X, 1) 5 (X, 1) be the functions defined by glx)=h(x)=f(x)foreveryx € X. Let i: (X, 1) - (X, 0)
be the identity function. Then, since tC o, i is an open bijection. Moreover since f =i o g is continuous, g
is continuous. Next,we shall show that h is 8-continuous . Letx e X and h(x ) e Ve RO(X, 7). Since (X, 1)
is almost-regular, there exists Ge tsuch that h(x)e GC G C V. Since g is continuous, g* (G) e oand
bt (G)=f' (G)=g* (G). Therefore, h'! (G) ! (G) € o and hencc, unhzm\y conunuuy of £ we obtain
xel(@)C H GO = G (G 0 %= LHG S CHGY crv) = i (V).
Now,weset U =h I(G) ‘) ,then we have x € Ue RO(X, 1) and h(U)C V. This shows that h is §-continuous.
Since (X, 7) hasthe 8cFPP, there exists x ¢ X such thatx =h(x) = f(x). This shows that (X, ) has the fixed

point property.
COROLLARY 3.1 (Connell [1 1] )- Supposc (X, 1) is aregular space with the fixed point property. If
is a topology for X, 1C o and G G Yfor each G e o, then (X, o) has the fixed point property.

PROOF. It is shown in [3, Coroll.iry 1.8] that if Y is regular, then f: X - Y is d-continuous if and only
if is continuous. Since every regular space is almost regular, this is an immediate conscquence of thcorem 3.2.
We shall give a lemma which will be used in the proof of the final theorem.
LEMMA 3.1.Letf:X—Y and g: Y— Z be functions:
(1) f is weakly continuous 1f and only if f‘(V) C f' (V) foreach openset V of Y.
(2) If the composite g o f: X—Z is weakly continuous and g : Y= Z is an open bijection, then f is weakly
continuous.
PROOF. Statement (1) is Theorcm 7 ol [12]. We shall show Statement (2) by utilizing Statement (1). Let
V be any open sct of Y. Since g is open, g(V) is open in Z and
(gof) (c(V))C (g o ) (g(V)). Smu,g 15 bijecuve, (g o £)1(g(V)) = 1 (V). Moreover, smcc g is open,
(g0 O (g(V)) = £' (g (g (V))) C [ (g (¢(V)) = £1(V).Consequently, we obtain f (V) C ' (V) and hence
f is weakly continuous.
The following theorem is an improvement of [2. Theorem 3.4] and [11, Theorem 1].
THEOREM 3 3. Lct (X, 7) be aregular space with the fixed point property. If ¢isa topology for X stronger
than T and G G XOr every Ge o, then (X, o) has the wcFPP.
PROOF. Let f: (X, 0)— (X, o) be any weakly continuous function. Let g: (X, 0) > (X, 1),
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h: (X, > (X, 1) and i: (X, 1) > (X, o) be the same functions as in Proof of Theorem 3.2. Since
f=iog is weakly continuous and i is an open bijection, g is weakly continuous by Lemma 3.1. Since
(X, 7)is regular, g is continuous [8]. Next, we shall show that h is continuous. Let x € Xand V be an open
setof (X, 1) containing h(x). Since (X, 1) is regular, there exists Ge 1 suchthat h(x)e GC GmC V.
Since g is continuous, g' (G)€ o and h'(G)=f'(GQ)= g (G? Therefore, we have h' (G) =f'(G) € o.

Since'f is weakly continuous, by Lemma 3.1 f! (GS )C f1(G ). It follows from the same argument as in
Proof of Theorem 3.2 that h is continuous. Since (X, 1) has the fixed point property, there exists a point
x € X such that x =h(x) =f(x ). This shows that f has the fixed point property.

COROLLARY 3.2 (Arya and Deb [2]). If (X, 1) is a regular space with the fixed point property and if ¢
is a topology for X stronger than 1 such that G = G ! foreach G e o, then (X, o) has the 8-continuous
fixed point property.
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