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ABSTRACT. Let L be a second order linear partial differential operator of elliptic type on a

domain fl of IRm with coefficients in C(R)(fl). We consider the linear space of all solutions of

%he equation Lu 0 on fl with the topology of uniform convergence on compact subsets and

describe the topological dual of this space. It turns out that this dual may be identified with the

space of solutions of an adjoint equation "near the boundary" modulo the solutions of this adjoint

equation on the entire domain.
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1. INTRODUCTION AND PRELIMINARY NOTIONS.
Let H(R) denote the linear space of harmonic functions on a noncompact Riemann

surface R with the topology of uniform convergence on compact subsets and let us consider the

linear space H(R)’ of all continuous linear functionals on H(R). Nakai and Sario [1] showed

that this dual can be identified with a quotient space of harmonic functions as follows:

H(R)’ H((R).)/H(R),

where (R), represents the Alexandroff ideal boundary point of R and where H((R)) is the space

of germs of functions "harmonic at (R)".
In this work we replace H(R) by the space of solutions of a linear partial differential

equation and look for a similar description of the corresponding topological dual. We now

introduce these solutions.

Let fl be a domain (open connected subset) of IRm with m >_ 2. We consider the

following linear partial differential operator with real valued coefficients aij aji, fli and c in

C(R)(),
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m m

L + /(x) + c(x).
;,;=1 i=1

We assume that L is of elliptic type in f. This means that

m

i, j=l
aij(x)i > O, (1.2)

for each (l,...,m) E {m\{0} and for each x e . From (1.2) we see that for every

compact subset K of f/, there exists a constant A A(K) > 0 such that

m m m

A (_ aij(x)icj(_A-1
i=l i,j=l i=l

(1.3)

for’ each e [Rm and for each x e K.

WEYL’S LEMMA. [2, page 271]. Let f C(R)(f/). If u C0(f/) satisfies,

uCx)Lx)dx i f(x)x)dx, (.4)

for every E C(f/), then u C(R)(f/)

Therefore if u e C0(f/) satisfies (1.4) for every o e C(f/) then, at each point x ft, u

satisfies the adjoint equation L u(x) f(x) where,

m

L u(x)=
i, j=l

Oxi02Oxj (aij(x)u(x))

m

(Zi(x)u(x)) + c(x)u().Ox

(1.5)

,
The operator L defined by (1.5) is called the adjoint of L.

,
We denote by L(f) the set of all solutions of Lu 0 on f and by L (f/) the set of all

solutions of L u 0 on f/. The set L(f/) is a locally convex linear subspace of the locally
convex topological linear space C0(f/). We endow L(f/) with the topology of uniform

convergence on compact subsets of f/ and we denote by L(f/)’ the linear space of all continuous

linear functionals on L(t)
We wish to describe L(f/)’ In the next sections we shall identify this dual space with a.

certain quotient space by using a formula which relates the two operators L and L In the
remainder of this section we state this formula and refer the reader to Miranda [3] for additional

information on this.
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Let S be a C1 hypersurfacein 12. If (x)= (nl(x),...,nm(X)) is a continuous vector

field normal to S, then by setting

m m

I--1 j=l

we define a conormal to S

continuous components,

as being a vector field (x)= (Ul(X),...,m(X)) on with

m

aij(x)nj(x);i l,...m,
j=l

and whose direction is never, by (1.2), tangent to S.
The directional derivative in the direction of a conormal to S will be,

m

=-. V = aij(x)nj(x) o

and we shall call the differential operator 0/oL a(x)O/Ou a conormal derivative.

aij=ij then a=l and u=n.

When

GREEN’S IDENTITY. Let D be a subdomain with compact closure in 12 and with a C1

boundary 0D. If u,v e C2(]3) then,

{v(x)Lu(x)- u(x) L v(x)}dx [v(x),u(x)] (1.{})

with,

[v(),u()]

"L OuL
+e(x)u(x)v(x)}ds,

where,

m

e(x) ei(x)ni(x),
i=l

m

ei(x =/i(x)- 0aij(x)/%, i=l,...,m
j=l

and where ni(x are the components of the unit normal exterior to D.
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If u or v in (1.6) has compact support then we obtain a formula which justifies the,
terminology used for L

2. SPACES OF GERMS AND STATEMENT OF THE DUALITY THEOREM.
In order to describe our dual space L(fl)’ we need to introduce now some terminology

and to make some remarks.

We shall say that a subdomain D of f, relatively compact and having a C(R) boundary,
is a normal subdomain when f\D does not have any compact connected component. An open
subset U of 12 will be called a (punctured) neighborhood of infinity if there exists a normal,
subdomain D of f such that 12\13 U. If U is a neighborhood of infinity and if u e L (U),
then we say that (u,U) (or simply u) is a solution at infinity of L u 0.

Let U 1 and U2 be two neighborhoods of infinity and let (Ul,U1) and (u2,U2) be two.
solutions at infinity of L u 0. Then we say that u1 and u2 are equivalent if there exists a

neighborhood of infinity in U Iq U2 on which uI and u2 coincide. The equivalence classes so

obtained are called germs of solutions at infinity and we denote by L ((R)) the linear space of.
germs of solutions at infinity of L u 0. Here the symbol (R) (R)f2 represents the point such

that 12 13 {(R)} is the Alexandroff compactification of 12. Therefore a germ [u] belongs to L ((R))
if L u 0 on a (punctured) neighborhood of (R) in fl.

Uniqueness properties for solutions of elliptic equations were studied in a large number of

works and one can obtain several references about this in Miranda [3]. The statement that follows
comes from Agmon [4, page 151].

UNIQUENESS THEOREM. Let L be a second order linear partial differential operator of
elliptic type on a domain 12 of Im with coefficients in C(R)(t2). If a C2 solution u of Lu 0
has a zero of infinite order at a point in 12 then u 0.

In view of the uniqueness theorem we may identify a solution u e L (12) with the germ
* , ,

[u] E L ((R)). The mapping from L (fl) to L ((R)) which maps each u to its equivalence class,
[u] is indeed injective because if [Ul] [u2] with u1 and u2 in L (12) then u1 u2. vanishes

on a neighborhood of infinity and, therefore, identically on 12 by the uniqueness theorem.

Let W1 and W2 be two normal subdomains of 12 and let u and v be two functions of

class C2 satisfying Lu =0 and L v=0 on a neighborhood of 12\Wj, j= 1,2. Then by

applying Green’s identity (1.6) on W0\W where W0 is a normal subdomain such that

W LI W2 c W0 we obtain, for 1,2,

0 [(x),u()]- 0 [(),u(x)]

0

{(x)LuCx) Cx)L ()} 0.

W0 Wj
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F

Formula (2.1) means that the integral | Iv,u] does not depend on the choice of the

,
normal subdomain W such that u e L(12\W) and v e L (tg\W). We can therefore define the

integral on the ideal boundary of fl (obtained by compactifying fl in the sense of Alexandroff)
as follows,

I Iv,u] wf/lima Iv,u], (2.2)

,
whenever u and v are solutions at infinity of Lu 0 and L v 0.

Finally, by choosing an equivalence class e in L ((R)) and an element v E e we see that

the continuous linear functional defined by,

L(f/) 9 u J Iv,u] (2.3)

does not depend on the choice of v e e.

We can now state our result.

DUALITY THEOREM. There is a vector-space isomorphism

L(fl)’ L ((R))/L (fl) (2.4)

,
where the action of a germ in L ((R)) on a solution in L(f/) is given by

(,u) I [,u]. (2.5)

A representation similar to (2.5) was obtained by M. Nakai, L. Sario [1] for harmonic

functionals on noncompact Riemann surfaces. When the operator L is self adjoint, as it is in the

harmonic case, then the isomorphism (2.4) reduces to the one of Nakai, Sario.

3. SOME TOOLS.
In order to make easier the reading of the proof of the duality theorem, we present in this

section, some of the results that will be used in the next sections.

The first result is an extension, to solutions of second order linear partial differential

equations of elliptic type, of the classical Runge approximation property for harmonic functions.

The statement that follows comes from Lax [5, page 760].

LAX’S EQUIVALENCE THEOREM. Let L be a second order linear partial differential

operator of elliptic type with C(R) coefficients in a domain t of Rm and let D be a normal

subdomain of f. Every C2 solution of Lu 0 in D is the uniform limit on compact subsets

of D of a sequence of solutions of Lu 0 in ft if and only if every solution of the adjoint,
equation L u 0 vanishing on a hypersurface S and whose conormal derivative vanishes on S

is identically zero.
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The existence and the properties of fundamental solutions for elliptic operators will also be

used. We now recall the main facts connected with them and, as in section 1, we refer the reader

to Miranda [3] for additional information on the remainder of this section.

Let (aij) be the matrix of coefficients of the principal part of L. We denote by Aij the

elements of the inverse matrix of (aij) and by A the determinant of (aij) We set,

m
1 , Aij(y)(xi_,i)(xj_yj)]

(2-m)/

(m-2)Wm i, 1

H(x,y)
for m> 2,

1
m

log , Aij(y)(xi-Yi)(xj-yj)] -112
i,j=l

for m=2.

If r Ix- yl then in every relatively compact subdomain of l’l we have by (1.3),

H O(r2-m) OH O(rl-m) 02H O(r-m)0x. o"X. 0x.

A function E(x,y) will be called a fundamental solution of the equation Lu 0 (L u 0)
on a domain W if it satisfies the following properties"

i) E(x,y) and all its partial derivatives of first and second order with respect to the coordinates

x of the variable x are continuous on W W outside the diagonal.

ii) E(x,y) and all its partial derivatives of first and second order with respect to the coordinates

x of the variable x satisfy, for some A > 0, the following bounds,

E-H O(rA+2-m) 0(E-H) O(rA+l-m)X.

02(F-,-H) O(rA-m)Ox. Ox.

uniformly on every relatively compact subdomain of W.

iii) LxE(x,y 0 (LxE(x,y) 0) for each x E W with xy.

Any fundamental solution E(x,y) on a domain W together with all its partial derivatives of

first order with respect to the coordinates x are locally integrable in each variable and also on
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WxW. Moreover if E,(x,y) is a fundamental solution of the equation L u 0 then by [3, page

19, (9.3)] we have LxE(x,y y. Therefore E is a fundamental solution in the sense of

distribution theory.

GIRAUD’S THEOREM. [3, page 66]. Let fl be a domain in [m and let y be a point of

Each C2 solution u of Lu 0 in f\{y} satisfying,

u(x) o(H(x,y)) when x- y,

extends to a solution of Lu o on the entire domain fl.

PROOF OF FORMULA 2.5.

We set,

F(o)(u) I Iv,u]

and obtain a linear mapping,

F" L ((R)) L(fl)’ (4.1)

Given ! e L(fl)’ we look for o { L ((R)) such that F(o) t. We first extend t to a continuous

linear ffmctional on C0(fl), [6, page 10S]. Then, [1, page 154], there exists a signed regular Borel

measure # with compact support in fl such that,

l (u) I ud# (4.2)

for every u e L(fl)
We denote by S the intersection of all normal subdomains of 12 containing the support

of #. Then S# is a compact subset of fl and contains the support of #. Let {Wj}j:I be an

exhaustion of f by normal subdomains such that S# {: W1 For each integer _> 1, let Ej(x,y)
be a fundamental solution of the equation L v 0 on Wj. Since L has its coefficients in

C(R)(12) and since Wj has compact closure in fl, the existence of Ej(x,y) is guaranteed, [3, page

For each >_ 1, we define a continuous function vj(x) by setting,

vj(x) Ej(x,y)dy),

for every x E Wj\S# with # given by (4.2).

Let to E Cc(Wj\S#). Since Ej(x,y) is integrable, we find by using Fubini’s theorem and



80 P. BLANCHET

Green’s identity on a regular domain G such that supp o c G Wj\S#,

vj(x)Lx)dx O,

Wj S#

and we conclude by Weyl’s lemma that vj E C(R)(W.I’\S/z and that L vj(x) 0 on Wj\S#.

Let D be a normal subdomain such that S#cDcI3cW1. If ueL(fl) then by Green’s

identity we have,

I [vJ+l(x)’u(x)] I [vJ+l(x)’u(x)]’ (4.4)

for each j_> and,

u(y) I [EJ+l(x’y)’u(x)]’ (4.5)
0W.

for each y e Wj, [3, page 19]. Therefore by Fubini’s theorem and by formulas (4.3), (4.4), (4.5)

and (4.2) we find,

oD[VJ+l(x)’u(x)] [I EJ+l(x’y)dp’(y)’u(x)]

I Ow.[Ej+I(x’y)’u(x)]dpy)= I u(y)d#(y)= l(u),

and from this we conclude that,

t (u) ID[Vj(X)’U(X)], (4.6)

for each ueL(fl) and each j_>2.

In order to complete the proof we wish to replace

v e L (D\S#)

in (4.6) by an element

We fix a positive integer and consider for each positive integer k, functions defined by

Vk(X Vt+k+l(X)-Vt+k(X on Wt+k\S# By Giraud’s theorem, the two fundamental

solutions Et+k+l(x,y and Et+k(x,y differ at most on Wt+k by a function gk(x,y) of class

C2 in the variable x satisfying Lxgk(x,y)= 0 on Wt+k for each y e Wt+k
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We claim that gk(x,y) is continuous on Wt+k Wt+k To prove this we write L as,

m m,
L aij(x) Ox. Ox. + bi(x)axo.

i,j=l i=l

+ b(x),

where bi(x and b(x) are of class C Since gk(x,y) is continuous on Wt+k Wt+k when

x y, it suffices to prove the continuity of gk(x,y) at those points on the diagonal.

We show that gk(x,y) is continuous on B B where B is any small ball in Wt+k

Let us consider such a ball B sufficiently small to guaranty the existence, in a neighborhood w

of B, of a positive C2 solution w(x) of L w(x) =-1, [3, page 65 and 66].

For each x E w and each y E Wt+k we set,

gk(x,y)
gk(x’Y)
w(x) -w(x) g(x,y)w(x),

and we show that g(x,y) is continuous on B B. Let us remark that g(x,y)satisfies an

elliptic equation Axg(x,y 0 on w where

m

A= aij(x) 0x. +
i,j=l

m m Ow(x)l 0 1
bi(x)+w aij(x) Oxj] ii-w"i=l j=l

We choose a point (xl,Yl) in B- B and write,

g(x,y) 1-gk(xl,Yl)l <_ Igkl(x,y)-g(x,Yl)l +

1g (x,yl) gk(Xl ’yl)I
(4.7)

By the continuity of g(x,Yl) at the point x1 we see that the second term in the right

member of inequality (4.7) can be made arbitrarily small when x is close to x1 By the

maximum principle [3, page 7],

gk(x,Yl) < )l, (4.8)

1 1_

for each x and y in B. But by the continuity of g(x,y)- g(x,Yl) outside the diagonal, the

right member of (4.8) and therefore those of (4.7) can be made arbitrarily small when y
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approaches Yl and (x,y) approaches (xl,Yl). This proves the continuity of g(x,y) at

(xl,Yl) and therefore in B B. Thus gk(x,y) is continuous on B B and therefore on

Wt+k Wt+k This proves the claim.

Using the claim, we extend continuously Vk(X by setting,

Vk(X) I gk(x’y)d#(Y)

for each x e Wt+k Using Fubini’s theorem and Green’s identity as above we obtain,

f
| Vk(x)Lx)dx O,

Wt+k

for every , e C(Wt+k) and we conclude by Weyl’s lemma that Vk e L (Wt+k).

By the uniqueness theorem we may apply Lax’s equivalence theorem in order to obtain, for.
each positive integer k, a global solution hk e L (f) such that,

sup{]Vk(X -hk(X)l.xe Wt+k_l} < 1/2k (4.9)

Estimate (4.9) shows that the series (Vk hk) converges uniformly on compact subsets of
k=l

Let us consider the series defined on Wt+I\S# by,

v= vt+1+ (Vk-hk),
k=l

,
and whose sum belongs to L (Wt+l\S#). Since vt+/+Vt= vt+i+ on Wt+/\S#
l= 1,...,k-1 and each k_2,weseethat

k--1

vt+ + Vi-vt+k,
i-1

for each

on Wt+l\S#
by the series

This shows that, for each positive integer k, the function defined on Wt+k\S#

Vt+k -(h +...4-hk_l) + (V-h),
=k
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extends v to an element of L (Wt+k\S/). Such an extension being possible for every k, we
,

see that v extends to an element, still denoted by v, of L (fl\S#).

Thus by applying Green’s identity on a subdomain D such that S# c D C I3 C W to an

element u e L(fl) and by using (4.6) we have,

[(x),()]

t (u) + I (Vk(X) hk(x))Lu(x u(x)L
D k-1

(Vk(X)-hk(x)) dx.

k=l

herefore,

t (u) [v(x),u(x)]
for every u e L(fl). Since v e L (fl\S#) we obtain by (2.1) the desired representation,

t (u) I [(x),(x)],

and the existence of an element o Iv] E L ((R)) such that F(o) t.

5. PROOF OF ISOMORPHISM 2.4.

Let us denote by ker F the kernel of the mapping (4.1). In order to complete the proof of,
the duality theorem, we have to show. that ker F L fl).

It is clear that ker F3L (fl). Indeed if vEL (fl) then for every uL(fl) we have,

F()(u) I Iv’u]
(R)

w-,fl
im 0w[V’U]
*m {vLu- uL v}dx 0

w-f

Conversely let us take an element v (v,U) o e ker F and a normal subdomain W such that

fl\W c U. We extend v to an element in C2(fl) and we consider g e C2(W) such that
Lg=0 in W and g=0 on 0W.

By Green’s identity we have,

v ds=- gL dx. (5.1
OW W
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,
The right integral in (5.1) is taken on the support of L which is a compact subset of W. By
Lax’s equivalence theorem, L() is dense in L(W) and therefore there exists a sequence

[II

{gj}j=l in L(f) such that hm(R)gj g uniformly on the support of L . Since v e o e ker F

we have by Green’s identity,

gL ,.dx -lim. -dx lim. [v,gj] 0,

W (R) (R)

and (5.1) becomes,

v uL ds 0. (5.2)

,
Therefore, [3, pages 76, 77 and 78], (5.2) implies the existence of h E C2(W) such that L h 0

in W and h v on 0W. We are going to show that there exists a function h1 satisfying

these properties and such that O(V-hl)/OvL 0 on OW.

By Green’s identity we have,

I * I t0 (v-h)ds (5.3)uL dx u

W OW

for every C2 solution of Lu 0 in W taking boundary values of class C2 on 0W. By an

approximation theorem of Walsh-Mcrgelyan type for solutions of Lu 0 [7, page 150, theorem

2], the formula (5.3) remains valid for any solutions of Lu--0 in W taking continuous

boundary values on 0W. Therefore, by Lax’s equivalence theorem, formula (5.3) becomes,

I U-L0 (v-h)ds 0 (5.4)

for every u E L(W) f C0(W)
Let us denote by P the prehilbert space L2(0W,ds) rl C0(0W), by the subspace of the

boundary values of functions u e C0(W) such that Lu 0 in W and by ,I, the subspace of P
,

of all functions 0o[0,L where EC2(-) satisfies L o=0 in W and o=0 on 0W. The

space of such o has finite dimension, [3, pages 76 and 77]. Moreover if {Pi}ik=l is a basis of this

space then {0i[OuL}ki=l is a finite basis of I,. Therefore, by a property of finite dimensional

linear subspaces of a prehilbert space, [8, page 66, theorem 3], we have O+/-" . But since we

already know that Ox , [a, pages 77 and 78], we conclude that q, Z+/-

By (5.4), 0(v-h)/0uL e S Therefore, there exists h0 e C2(") satisfying L h0 0 in

W,h0=0 on 0W and 0(v-h)/&L=0h0/&,L on 0W. By setting hl=h+h0,weobtain
,

an element of C2(W) satisfying L h 0 in W and v-h 0(V-hl)/OlJL 0 on 0W.
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Let " be the function on fl\OW which coincide with v on fl\W and with h on W

Then by the preceding remark " extends continuously to the entire domain ll and satisfies the

following relation,

(x)L()dx 0, (.)

for every o E C(12) To prove (5.5) let o be in C() and let D be a domain with compact

closure in 12 containing the support of o such that the two subdomains D1 D N(I\N),

D2=DNw have a boundary of class C By using the fact that v-h and its conormal

derivative vanish on OW, we see that the integral in (5.5) is equal to

* I * (x)dxx)L v(x)dx + x)L h

D 1 D2

and (5.5). follows. Therefore, by Weyl’s lemma

ker F c L (l). This proves the duality theorem.

, *,EL (fl). Thus Iv] =[’]e L (fl) and
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