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ABSTRACT. We characterize all infinite matrices of bounded linear operators

on a Banach space which preserve the limits of uniformly convergent sequences

defined on an infinite set. Also, we give a Tauberian theorem for uniform

summability by the Kuttner-Maddox matrix.
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I. INTRODUCTION.

By T we denote any infinite set of objects and we consider functions

fk T X for k I, 2 where (X, II. II) is a Banach space.

The notation fk => f will be used to signify that fk f as k , uniformly

on T, which is to say that there exists f T X such that for all e > 0 there

exists k k (e) > O with
o o

..llfk(t) f(t) ll < e, for all k > k and all t E T.
o

Now suppose that for n,k 1,2 each Ank E B(X), i.e. each Ank is a

bounded linear operator on X. Then we shall say that A (Ank) is a uniform

Toeplitz matrix of operators if and only if:

r. Ankfk(t) converges in the norm of X
k=l

for each n N {1,2,3,4,... and each t T and

Z Ankfk => f
k=l

whenever fk => f"

Following Robinson [i] and Lorentz and Macphail [2], if (Bk) is a sequence in

B(X) we denote the group norm of () by
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P

where the supremum is over all p E N and all x
k

in the closed unit sphere of X.

By C we shall denote the (C,I) matrix of arithmetic means, given by

i O 0 O O

i I
O O O

2 2

1 1 1 0 0
3 3 3

By D we denote the Kuttner-Maddox matrix, used extensively in the theory of

strong summability [3, 4, 5]:

1 O O O O O O O O

i I
0 0 0 0 0 0 0

2 2
I i I I

O 0 0 0 0
4 4 4 4

In work on strong sunnability it is often advantageous to use the fact that,

for non-negative (pk) the sunnability methods C and D are equivalent, in the

sense that Pk O(C) if and only if Pk O(D).

In connection with Tauberian theorems we now introduce the idea of uniform

strong slow oscillation.

Let s
k

T X for each k E N. Then we say that (sk) has uniform strong

slow oscillation if and only if Sn s
k

=> 0 whenever k and n > k with

n/k O(1)-
In what follows we shall regard s

k
as the k-th partial sum of a given

series of functions r.a
k

a
I

+ a
2

+ each a
k

T X.

2. UNIFORM TOEPLITZ MATRICES.

The following theorem characterizes the uniform Toeplitz matrices of

operators which were defined in Section I.

THEOREM i. A (Ank) is a uniform Toeplitz matrix if and only if

SUPnIl(Anl, An2, ...)II < ,
A is column-finite,

for each n N, A Y. Ank converges,
n

k=I
A I, ultimately in n.
n

PROOF. We remark that in (2.3) the convergence is in the strong operator

topology, and in (2.4), I is the identity operator on X.

For the sufficiency, let H denote the value of the supremum in (2.1), let

(2.1)

(2.2)

(2.3)

(2.4)
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n N and t T. Then, for any e > O there exists k such that
o

..llfk(t) f(t)l_ e for all k > k
o

Now for each p N,

P P P
E Ankfk(t) E Ank(fk(t) f(t)) + E Ankf(t),

k=l k=l k=l

where we assume that fk => f" By (2.3), as p , we have

P
Z Ankf(t) Anf(t).

k=l

Also, if s > r > k
o

s

II Z Ank(fk(t) f(t))ll < He,
k=r

whence Z Ankfk (t) converges.
k=l

By (2.4) there exists m N such that A I for all n > m, and by (2.2)
n

there exists n (e) N such that Ank O for I < k < k and for n > n
o o o

Taking n > m + n we have
o

Ankfk(t) f(t) + Ank(fk(t) f(t)).
k=l k=l+k

o

Since

II Ank(fk(t) f(t))ll < ell(Anl, An2 )II,
k--l+k

o

it follows by (2.1) that ZAnkfk => f, which proves the sufficiency.

Now consider the necessity. Take any convergent sequence (xk) in X, with

x
k

x. Define fk(t) x
k

for all k N and all t T, and define f(t) x for

all t T. Then fk => f and so ZAnkXk converges for each n and tends to x,

whence the usual Toeplitz theorem for operators, see Robinson [i] or Maddox [6],

yields (2.1) and (2.3) of our present theorem.

Next, suppose that (2.4) is false. Then there exist natural numbers

n(1) < n(2) < with A # I for all i N Hence there exist x. X with
n(i)

(2.5)

for all i N. Let us write y(i) for the expression inside the norm bars in (2.5).

Since T is an infinite set we may choose any countably infinite subset

{tl, t2, t3, ...} of T. Then we define f T X by

f(ti) xi/I ly(i) ll (2.6)
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for all i N, and f(t) 0 otherwise. If we define fk f for all k N then

we certainly have fk => f" But A is not a uniform Toeplitz matrix, since for

n --n(i) we have by (2.6),

II Ankf(ti) f(ti) ll A x. II/I ly(i) ll
k=I n i I

Hence, if A is a uniform Toeplitz matrix then (2.4) must hold, and a similar

argument shows that (2.2) is necessary, which completes the proof of the theorem.

Since C, the (C,I) matrix, is not column-finite we immediately obtain:

COROLLARY 2. C is a Toeplitz matrix but not a uniform Toeplitz matrix.

However, since the elements of the Kuttner-Maddox matrix D are non-negative

and its row sums all equal I it is clear that the conditions of Theorem I hold,

whence D is a uniform Toeplitz matrix. Thus, whenever fk => f it follows that

2-r Irfk=> f,

2
r

2
r+l

where the sum in (2.7) is over < k < for r O,1,2, We also

express (2.7) by writing fk => f(D).

The relation between C and D for uniform summability is given by:

THEOREM 3. fk => f(C) implies fk => f(D), but not conversely in general.

PROOF. Write

n-I -rr.rfkc(n) n r. fk(t) and d(r) 2 (t).
k=l

(2.7)

Then we find that

d(r) (2 2-r) 2
r+l

I),c( i) (i- 2-r)c(2r (2.8)

and it is clear that the right-hand side of (2.8) defines a uniform Toeplitz

transformation between the c and d sequences.

For the last part of the theorem we may define real-valued functions on T by

fk(t) 2
r
when k 2

r
and fk(t) -2

r
when k i + 2

r
and fk(t) 0 otherwise

Then fk => O(D). Now suppose, if possible, that fk => f(C), which implies

fk => f(D). Hence f O. But

c(2r) (i- 2-r)c(2r i) i,

contrary to the fact that c(n) O.

3. A UNIFORM TAUBERIAN THEOREM.

By the remark following Corollary 2 we know that fk => f implies fk => f(D),

but the example of Theorem 3 shows that the converse is generally false. The

next result shows that uniform strong slow oscillation is a Tauberian condition

for uniform D summability.
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THEOREM 4. If (sk) has uniform strong slow oscillation and s
k

--> f(D)

then s
k

--> f.

PROOF. Without loss of generality we may suppose that f O.

Take n N and determine r such that 2
r -< n < 2r+l If e > 0 there exists

r such that if 2
r

< k < 2
r+l

then
o

lSk(t) Sn(t)l <

whenever r > r and t T. Since
o

2-rZrsk(t) Sn(t) + 2-rZr(Sk(t) Sn(t))

we see that s --> O.
n

Our final result shows that the natural conditions ka
k

=> 0 or ka
k

=> O(C,I)

are both Tauberian conditions for uniform D summability, but that the restriction

ka
k

=> O cannot be relaxed to the uniform boundedness of (kak).
THEOREM 5. (i) If ka

k
=> O or ka

k
=> O(C,I) and s

k
=> f(D) then s

k
=> f.

(ii) There exists a divergent series la
k
with (kak) uniformly

bounded and s
k

=> O(D).

PROOF. (i) First note that ka
k

--> O does not generally imply ka
k

--> O(C,I)

because (C,I) is not a uniform Toeplitz matrix by Corollary 2. We shall show

that ka
k

=> O(C,I) is a Tauberian condition for D, the proof for ka
k

--> O being

similar. In fact we shall show that ka
k

=> O(C,I) implies that (sk) has

uniform strong slow oscillation.

Let us write a
k ak(t), Sn Sn(t) and

n
A n Z ka.,
n

k=l

with the assumption that A => O. Then for n > k > i, by partial summation,
n

n-I
s s

k
A k

n n Ak + Z (A- kAk)/(+l)
=k+l

whence

n

llSn Skll <max{llAv II k < u < n}(l + k + 2 Z __).i
=-k+l

If n/k =0(I) then

n
1<2+I +

k + 2 l
+I 2 0(i),

n =k+l

and so s s
k

=> O, as required.
n

(ii) Define a numerical sequence (sk) by s
k

--0 when 1 < k < 4, and for n >2
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define s
k

0 when k 2
n

and when k 2
n

+ 2 2n-2; s
k

1 when k 2
n + 2

n-2

2
n-2

and s
k

-i when k 2
n

+ 3 Otherwise define s
k

linearly, so that

the graph of (sk) is a triangular-shaped wave. Then (Sk) diverges and it is

clear that ErSk O for all r e O. Also, it is easy to check that klakl 8

for all k e i, whence our result follows on defining Sk(t) s
k

for all k e I

and all t T.
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