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ABSTRACT. Let (X) be a sequence of mean zero independent random variables.
n

k

Wk j{=l Xij II ’ il < i2"’" <ik }’ Yk JUnk Wj and let [Yk be the linear span ofLet

Yk" Assume IXnl ( K for some > 0 and K > 0 and let

C(p,m) 16(5/ p2"m-l ()" for < p < m. We show that for f e [Y the
p- logp m

following inequalities hold:

inequalities on Wlsh functions.

These generalize various well known
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1. INTRODUCTION.

Let (X) be a sequence of independent mean zero random variables. Let W
k

be
n n)l

products of length k of the (Xn)n) i.e.

W
k {Xi2Xi2... Xikll < i

2 < < ik},

let Yk jJj and let [Yk be the linear span of functions in Yk" The object of this

note is to show that for functions in [Yk the p’th mean is of the same order as the

second moment. As such this generalizes classical inequalities such as Khlnchln’s

inequality in Zygmund [I] as well as more recent inequalities on Walsh functions such

as those of H. Rosenthal [2] and A. Bonaml [3]. Precisely we prove the following:

THEOREM 2.4. Let (Xn) n be a sequence of independent mean zero random

variables on a probability space (fl, 1). Suppose there exist > 0 and K > 0 such

that IXnl K for all n. For f e [Y we have
n
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<C(q,n:>llll , o,: <p < 2 +Iif112 C(q n) Ilfllp " " (1.2)

IIllz < C(4,n)2 Ilflll C(4,n)2 11112
where C(p,n) 16 (5 pL_21)n-1 p, ()nlogp

We assume of course that the (Xn)n> belong to some LP(fl). Recall that for

p < (R), LP(fl) is the space of all measurable functions f such that

f]f()]Pdp ( and the norm of f is lfl Ip (flz()lPd.) x/p- We assume the reader

is familiar with martingales and refer to Garsia [2] for unexplained notation.

2. PROOF OF THE INEQUALITIES.

We require three preliminary facts in order to prove theorem 2.4. We denote by

E(X), the expectation of a random variable X.

THEOREM 2.1. [I]. Let r (t) be the Rademacher functions on [0 I].

n
Then f I akrk(t)Idt I (. lak12)I/2 for any complex numbers (ak)k= _C.

0 ken /2

THEORE 2.2. (Johnson, Schechtman, and Zinn [5]) Let (Xn)n> be a sequence of

independent mean zero variables and let (ak)nk=l n. Then for p > 2

l/p)

Recall that for a martingale f (fn)n>l its difference sequence is dn fn

fn-1 and its square function is S(f) (y. d2n)1/2
n

The last fact that we need is:

THEOREM 2.3 [4]. For a martingale f (fn), we have

p2 I1( d2)/211plfn IIp p k.
for < p < (R).

We may now prove Theorem 2.4 quite easily.

THEORE 2.4. Let (Xn)n> be a sequence of independent mean zero random variables

on a probability space (R,). Suppose there exist 5 > 0 and K > 0 such that

C<p m)llll o,: 2 < p <I1112 ’ I111p 2 (2.)

I1112 ’ C(q,m)l I11p c(q.,m)l I112 or < p < 2 (2.2)

and lip + llq I.

I1112 ’ C(4,m) C(4,m) (2.3)
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2
where C(p,m)= 16 (5 p--L)m-l- logpP ()m.

PROOF. The proof is by induction on m. We will first consider the case p > 2.

and f e [YI]. Then f I auX for some a
k e C, k n. BySuppose m

Theorem 2.2 we have,
kn

kn kn

((112.11)/ (11.11)/)logp
max

(Snce EXk=0 and Lhe ae ndependenL)
16 pK 21/2, p) 1/
logp max (( I1 Il )

k k

16p___K . lakl2)l/2 (2.4)
logp k n

kn
follows for m I.

> 6( [ [a12)I/2 and so by (2.4) the result
kn

We assume the result is valid for f e [Ym ]. Let f e [Ym+l ]. Note that we may

write f as f . fnXn where fn [Ym and fn only depends on the random variables
n )I

Xj, (J < n. It is clear then that f is a sum of a martingale difference

sequence. Applylng Theorem 2.3 we have

2
5 p

2

2 2)I/2
n>l

n p
(since IXn[ K)

,- II f Y. ==(=)f=[d=[Ip (by Theorem 2.1)
p-1 0

2

0 k)l n p

2, 7 c(p,.) f II = (=)= II 2
dt (by nducton)

0 n>l
n

2 2 I/2

0 nl
2

0 nl
n

2p
52 K C(p,m) (f f [ rn(t)fn()2dtdu)l/2 (by Fublnl s

G 0 n)l eorem)
2

52 K C(p,m) (f [ f2()d)I/2 (since the demacher’s are

orthogonal)
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5 K (since f is a martlngle)Ilftl 

< p < 2 we employ the classical trick of der. t q defined by + 1.
P q

l-O 0en +--p for 0 . t f [Ym ]"

/2llfl1112 (by HSlder’s inequality)

1/2 1/2 (since q > 2).

.h lfll ’ lfl12 " o.o=., p,ov.g (2.2). Finally to

0 0
see (2.3) note that 4 +T for o 1/3, so again by HOXder’s inequality,

2/3 1/3 /3 2/3 1/3 (for f : [Y ])

is automatic, proving (2.3).
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