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ABSTRACT. The main result we obtain is that given # : N > M a T*-subbundle of
the generalized Hopf fibration 7 : H*** 5 cP" over a Cauchy-Riemann product
i:M g cP%ie j: NS H®* is a diffoomorphism on fibres and 7oj= iom, if
s is even and N is a closed submanifold tangent to the structure vectors of
the canonical Rstructure on H*** then N is a Cauchy-Riemann submanifold
whose Chen class is non-vanishing.
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1.- INTRODUCTION AND STATEMENT OF RESULTS.

As a tentative of unifying the concepts of complex and anti-invariant
submanifolds of an almost Hermitian manifold, A. BEJANCU, [1], has introduced
the notion of Cauchy-Riemann (C.R.) submanifold. This has soon proved to
possess a largely rich number of geometrical properties; e.g. by a result of
D.E.BLAIR & B. Y.CHEN, [2], any C.R. submanifold of a Hermitian manifold is a
Cauchy-Riemann manifold, in the sense of A.ANDREOTTI & C.D.HILL, [3].

Let M™** be a real (2n+s)-dimensional manifold carrying a metrical f-struc-
ture (f , C., n,, %, 1 < a < s, with complemented frames, cf. [4]. A submani-
fold j : N > M™" s said to be a framed C.R. submanifold if it is tangent
to each structure vector g, of M?** and it carries a pair of complcmentary
(with respcct to G j % ) smooth dlstnbuuons @D, @1 such that fx(gx)

f (9 )ET (N) , for all x € N, where T(N) > N stands for the normal bundle
of j Cf. I MIHAI [51, L.ORNEA, [6]. Since f-structures are known to
generalize both almost complex (s=0) structures and almost contact (s=1)
structures, the notion of framed C.R. submanifold containes those of a C.R.
submanifold (see e.g. [7], p.83) of an almost Hermitian manifold and of a
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contact C.R. submanifold (see e.g. [7], p.48) of an almost contact metrical
manifold.

Let 7 : H™"® 5> cP® be the generalized Hopf fibration, as given by
D.E.BLAIR, [8]. Leaving definitions momentarily aside we may formulate the
following:

THEOREM A

i) Let N be a framed C.R. submanifold of an SPmanifold M***. Then the
f-anti-invariant distribution QJ' of N is completely integrable.

ii) Any framed C.R. submanifold of H™'*, (carrying the standard structure)
is either a C.R. submanifold (s even) or a contact C.R. submanifold (s odd).
The converse holds.

iii) Let N be an f-invariant (i.e. @— = (0)) submanifold of H*™**. Then N is
totally-geodesic if and only if it is an SPmanifold of constant f-sectional
curvature 1 - % s.

iv) Any f-invariant submanifold of H™** having a parallel second fundamental
form is totally-geodesic.

It is known that compact regular contact manifolds are S'-  principal
fibre bundles over symplectic manifolds, cf. W.M. BOOTHBY & H.C.WANG, [9].
Eversince  this (today classical) paper has been published, several
"Boothby-Wang type” theorems have been established, cf. e.g. A.MORIMOTO, [10],
for the case of normal almost contact manifolds, S.TANNO, [11], for contact
manifolds in the non-compact case; more recently, we may cite a result of
I.VAISMAN, [12], asserting that compact generalized Hopf manifolds with a
regular Lee field may be fibred over Sasakian manifolds, etc.

There exists today a large literature, cf. K.YANO & M.KON, [7], concerned
with the study of the geometry (of the second fundamental form) of a C.R. sub-
manifold of a Kaehlerian ambient space. In particular, following the method of
Riemannian fibre bundles (such as introduced by H.B.LAWSON, [13], towards

4

studying submanifolds of complex space-forms, and developed successively by
Y.MAEDA, [14], M.OKUMURA, [15]), K.YANO & M.KON, [16], have taken under study
contact C.R. submanifolds of a Sasakian manifold M>*' (where M™*! is
previously fibred over a Kaehlerian manifold M) which are themselves
S'-fibrations over C.R. submanifolds of M>",

The last piece of the mosaic we are going to mend is the concept of
canonical cohomology class (here after refered to as the Chen class) of a C.R.
submanifold . Cf. B.Y.CHEN, [17], with any C.R. submanifold M of a Kachlerian
manifold there may be associated a cohomology class c(M) € H®(M; R), where P
stands for the complex dimension of the holomorphic distribution of M.
Although the canonical Hermitian structure (cf. [18]) of H™** is never
Kachlerian (cf. [8], p.174) we show that the Chen class of a C.R. submanifold
may be constructed as well and obtain the following :

THEOREM B

Let j : N > H™** be a closed (i.e. compact, orientable) submanifold tangent
to the vector fields §{ , 1 s a s s, of the canonical Sstructure on H®*
and assume there exists a T'- principal bundle n : N > M over a Cauchy-
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Riemann product M, 9, QJ'), i: M > CP" (@ is the holomorphic distribution),
such that ®oj = ion and j is a diffeomorphism on fibres. If s is even then N
is @ C.R. submanifold whose totally-real foliation is normal to the  charac-
teristic field of H*"** and whose Chen class c(N) € H®Y(N; R), p = dim, 9,
is non-vanishing.

2.- NOTATIONS, CONVENTIONS AND BASIC FORMULAE.

Let M™" be a real (2n+s)-dimensional C%-differentiable  connected
manifold. Let f be an f-structure on M™*} ie. a (1,1)-tensor field such
that £ + f = O and rank(f) = 2n everywhere on M™**, cf. K.YANO, [19].
Assume that f has complemented frames, i.e. there exist the differential 1-
forms r]: and the dual vector fields C; on M™*, ie. n;({;) = J.b ,1 < ab <
s, such that the following formulae hold:

mof=0  f¢) =0 f=-1+n o™ @
Throughout, one adopts the convention n; = nt, 5: = &*.The f- structure is
normal if [f, f] + (dn: )y e &' = 0, where [f, f] denotes the Nijenhuis
torsion of f, see e.g. H.NAKAGAWA, [20]. Let % be a compatible Riemaniann

metric on M*"*®, i.e. one satisfying:
%X, fY) = 94X, Y) - n(X) " (Y). 2.2)

Compatible metrics always exist, cf. D.E.BLAIR, [4]. Such (f , {: , r]: ,9)
has often been called a metrical f-structure with complemented frames. Let
F(X, Y) = %X, fY) be its fundamental 2-form. Throughout we assume M>*** to
be an Rmanifold, cf. the terminology in [4], i.e. the given f-structure is

normal, its fundamental 2-form is closed and there exist s smooth real-valued
functions « € C®M™>™**), 1 < a < s, such that:
dn = a F . 2.3)
We shall need, cf. [4], [21], the following result. Let M™**, n > 1, be a
connected manifold carrying the Rstructure (f, {:, ry:, %), 1 < a < s. Then
a are real constants, 5: are Killing vector fields (with respect to % )
and the following relations hold:
D& = -jafX 2.9
@ DY = o {I8X, V) - 1, ) °(V] & - X - mX) &' 0D} 2.5)
for any tangent vector fields X, Y on M?** Here D denotes the Riemannian
connection of (M***, ¢ ), and o' = a ,1sass
Let M™ be an Smanifold with the structure temsors (f, &, #), 4 ).
Let M be the smooth s-distribution on M**** spanned by {,1 s a=ss By
normality one has [C:, 5; ] =0, i.e. M is involutive. If both M and the
structure  vector fields C: are regular (in the sense of R.PALAIS, [22])
then the Rstructure itself is termed regular. We shall need the main result
of D.E. BLAIR & G.D.LUDDEN & K.YANO, ([21], p.175). That is, let M**** be a
compact connected (2n+s)-dimensional, n > 1, $manifold; then there is a
T*-principal fibre bundle 7 : M*** 5 M™ = M?"**/ M and M*®" is a Kaehlerian
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manifold. Here M>® denotes the leaf space of the s-dimensional foliation M and
T® is the s-torus. Also, cf. ([21], p.178), y = (r]; ,....,ry; ) is a connection
1-form in M®"(M® %, T* ). If X is a tangent vector field on M™, let X"
denote  its horizontal lift with respect to p. The Kaehlerian structure (J, g)
of M™ is expressed by:

IX =7, £X! (2.6)

gXx, ) = gx", YY. 2.7

Let & be the smooth 2n-distribution on M*1*® defined by the Pfaffian equations
” =0,1=<a =< s Then £ is precisely the horizontal distribution of y.

a
Since n€° o f = 0, the f-structure preserves the horizontal distribution.
a

Therefore (2.6) may be also written (J X)H = f X", Let V be the Riemannian

connection of (M?®, g). By ([21], p.179) one has:

Dyn Y' = (VyV "+ -atg X5 Y™ & . (2.8)
REMARK
Let = : N> M be a Riemannian submersion, cf. B.O’NEILL, [23]. Then Ker(n,)
is the vertical distribution, while its complement (with respect to the
Riemannian metric of N) 1is the horizontal distribution of the Riemannian
submersion. As to our 7: M*®** 5 M®™ a number of important coincidences occur.
Firstly, if M™ is assigned the Riemannian metric (2.7), then M>** > M™ is
a Riemannian submersion. Moreover # = Ker(n,) and therefore the horizontal
distribution of the Riemannian submersion is precisely £.

Let N be an (m+s)-dimensional submanifold of M, and M an
m-dimensional submanifold of M?, such that there exists a fibering # : N > M
such that 7#oj = ion and j is a diffeomorphism on fibres. Both i : M » M™,
j : N > M™" stand for canonical inclusions. Let g = i g G = j @ be the
induced metrics on M and N, respectively. Also we demote by V, D the
corresponding Riemannian connections of (M, g) and (N, G), respectively. Let B
(resp. h) be the second fundamental form of i (resp. j) and denmote by A (resp.
W) the Weingarten forms. Let T(M)J‘ > M (resp. T(N)'L > N) be the normal bundle
of i (resp. j). We put ﬁ. = tan ({: ), {':' = nor ({: ), where tan , nor_ stand
for the projections associated with the direct sum decomposition Tx(M““)
T(N) e TI(N)l, x € N. Then the Gauss and Weingarten formulae, (cf. e.g.
[24],p.39-40), of i, j and our (2.8) lead to:

Dyu Y' = (VN + et X5Y") &, 2.9)
bx®, Y®) = BX, )! + ;o e xH, Y% ¢ (2.10)
wyr Y = Ay XM - ; ot g(f XM, V%) ¢ 2.11)
Dlyn Vi = Wi+ lategxt v et @.12)

for any tangent vector fields X, Y on M, respectively any cross-section V in
T(M)J' > M. Here V l, pt stand for the normal connections of i, j. Of course,
towards obtaining our (2.9) - (2.12) one exploits the fact that (i, X)}l is
tangent to N, while V¥ is a cross-section in T(N)'L > N.
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REMARKS

1
1) Let H() = : Trace (B) (resp. H(Gj) = =7 Trace(h)) be the mean curvature
vector of i (resp. j). As an application of our (2.9) - (2.12) one may derive:

(m+s) HG) = m HO® + T [ ! o* nor(f ¢l -pyel 2.13)
am] a

provided that {C.: 1 < a < s} consists of mutually orthogonal unit vector
fields. In particular, if N is tangent to each structure vector {: , 1 s a s
S, then N is minimal if and only if M is minimal. Indeed, if X is tangent to
N, then (2.4) and the Gauss - Weingarten formulac lead to:

Dx.:_ = W,l X - ; a, tan(f X) (2.14)

h(X, §) + Di‘ CJ.' = - % a, nor (f X). 2.15)

Now, if {C.: 1 < a < s} are orthonormal, one uses a frame {Xi,C':} (where {Xi:
1< i < m} is an orthonormal tangential frame of M) such as to compute H(j).

2) Generally, if N is a submanifold of the $%manifold M>™** and N is normal to
some {; with a = O then tangent spaces at points of N are f-anti-invariant,
i.e. I‘ (T‘(N)) c Tx(N)J', x € N. Indeed, by (2.4) and the Weingarten formula

of N in M****, one has %a fX,)=-26Dx¢,Y) =2 Q(Wc.L X, Y) where
from WC l=0and f X is normal to N.

3. MANIFOLDS AS HERMITIAN OR NORMAL ALMOST CONTACT

METRICAL MANIFOLDS.

We denote by cP" the complex projective space with constant holomorphic
sectional curvature 1 (with Fubini - Study metric) and complex dimension n,
and by s*! the (2n+1)-dimensional unit sphere carrying the standard Sasakian
structure. Let 7' : §*! , ¢P” be the Hopf fibration and set
B = {@...p) € &' x..x ' | x'p) =..= n'@)}.

We define a principal toroidal bundle by the commutative diagram:

e L g x g

;l L x..x o

¢ — 5 cP* x..X CP"
a4

where 4 denotes the diagonal map, while A stands for the canonical inclusion.
Let n° be the standard contact 1-form on S™*'. We put n = a* A: 7, 1
< ass whre 4: 8. 8" 5§ are natural projections. Let Q be
the Kaehler 2-form of cP”. Then on one hand y = (q;,...,n: ) is a connection
1-form in H®**(P®, 7, T*), and on the other dn, = z £, such that one may
apply theorem 3.1 of [8], (p.163) such as to yield a natural Rstructure on
H®**. (Cf also [4], p.173). Let (f, {,» m, @) be the canonical Rstructure
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of H®*® If s is even one sets:

g=f+ Tn e¢, -n, e¢&) @3.1)

i
i=1

where i*= i + g, 1 sis=s i If s is odd, one labels the 1-forms n, as follows:
Nyr Mp M,0s i+ =1i+r, 1 < i s r, s = 2r+1, and similarly for the tangent
vector fields 6.. We consider:
r
p=f+1 n 0¢&, -n, ¢} (.2)
i=1

2n+s

The characteristic 1-form of H""°, s even, is defined by:

s/2
=2 L {n,-n. ) (3.3)
j=
Let B = o' be the characteristic field, where + means raising of indices by .
REMARKS
1) If s is even then (H"*, 4, ) is a Hermitian non-Kaehlerian manifold and
its characteristic form is parallel. Indeed, if s is even, then 4 given by

(3.1) is a complex structure and (HZ"“, 4 % ) turns to be a Hermitian

manifold, (cf. prop.4.1 in [8], p. 174) Let F(X Y) = 94X, 4 Y) be its Kaehler
s/2

2-form. By (3.1) it follows that F =F-2 ¢} n,oAn consequently (3.3)
i=1

leads to
dF = w AF 3.4

le (a.-&.)E

i.e. @ is not a Kaehler metric. Now our (2.4) yields D w =

Q-

1
on an arbitrary $manifold, provided s is even. Yet for l-l2 one has a =
.= a, (cf.[8],p.173), i.e. w is parallel.

2) Since d g0 =7 2,1 s a s s, it follows that w is closed. Therefore
H®** s even, admits the canonical foliation & defined by the Pfaffian
equation @ = 0. Each leaf of ¥ is a totally-geodesic real hypersurface normal
to the characteristic field of H™**.

3) Consider the submanifolds i : M > CP" and j : N > H™*® and assume that
a T-subbundle 7 : N > M of the generalized Hopf fibration, i.e. moj = ion
and j is a diffeomorphism on fibres. Suppose N is tangent to the

structure vectors é' of the Rmanifold H™® Then M is a C.R. submanifold
of €P" if and only if N is either a C.R. submanifold of (H™**, g %) ora
contact C.R. submanifold of (H™**, ¢, ¢ o> My % ). Note firstly that, if s
is odd, then (¢, ¢ 0 My g )is a normal almost contact metrical (a. ct. m.)
structure on Hz““, (cf. [8], p.175). If .{ = 0,1 < a < s, and s is even
then:

gL=¢,. L& =-¢, gx=0x" (3.5)
for any tangent vector field X on M, cf.(2.6). Let us define # Y = tan “Y),

Y = nor (£Y), for any tangent vector field Y on N. Then:

91-9'1; =0, 9195 =0, #Lox"=(@FpP X" (3.6)

where F P are def'med by (1.1) in [7] (p.76). Suppose for instance that (M,
D, éD ) is a C.R. submanifold of CP". Then P is @P-valued, while F vanishes on
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@, i.e. FP = 0. By (3.6) one has #t #= 0, and thus one may apply theor. 3.1
in [7] (p.87), such as to conclude that N is a C.R. submanifold of (H*'*, g,
% ). Note that, although stated for submanifolds in Kachlerian manifolds,
theor.3.1 of [7] (p.87) actually holds for the general case of an arbitrary
almost Hermitian ambient space. The case s odd follows similarly from theor.
2.1 of [7] (p.55) which may be ecasily refined from the Sasakian case to the
general case of a. ct. m. structures.

4) Let M, 2, Q'L) be a C.R. submanifold of CP", where @ (resp.QJ‘L) denotes the
holomorphic (resp. totally-real) distribution. Let # : N > M be a T"™-bundle
as in Remark 3). Let Dy > 9; be the holomorphic and totally-real (resp. the
@-invariant and ¢@-anti- invariant) distributions of N, provided that s is even
(resp. s is odd). Let £  the natural projection on the first term of the
direct sum decomposition T (N) 2y 0 9;1-5 ,x € N. Cf. 3.7) in [7] (p.86),
(resp. cf. (2.10) in [7] (p 53)) if s is even (resp. if s is odd) then 4 is

expessed by b= - P27 (resp. by ¢ =-2 L n, ® {o) where Y = tan(J Y),
(resp. Y = tan(p Y)). In both cases one has:

IN{.=C,15ass, = (X! 3.7
where ¢ = - P2, Asthesum9"+l,xeN 1sd1rectoneobtames9 9 @

l‘, x € N. Indeed, one mcluswn follows from (3.7). Conversely, let X’ € 9
then X’= (¢ X)" + (l‘l' X% + A {, .\ ec Wy, ¢ t=1-4 By applymg/Nto
both members one proves X’ € @ o M. It is also straightforward that (QJ')" =
ot .
4.- FRAMED CAUCHY-RIEMANN SUBMANIFOLDS

S. GOLDBERG, [25], has inaugurated a program of unifying the treatment of
the cases s even, and s odd, and studied f-invariant submanifolds of codi-
mension 2 of an $manifold. To make the terminology precise, let (N, 9, Q"L )
be a framed C.R. submanifold of M®** : we cal N an f-invariant (resp.
f-anti-invariant) submanifold if 9 = (0), (resp. if Q = (0)), for any x € N.

Let M*** be an $mamfold et x € M™*' and p S 'I’(M"'") a 2-plane.
(Cf.[8], p.159), p is an f-section if it is spamned by {X, f X} for some
unit tangent vector X € £ . The Riemannian sectional curvature of M>*, g)
restricted to f-sections is refered to as the f-sectional curvature of the
$manifold. (Cf. also [21], p.183).

At this point we may establish i) of theor, A. Let X, V be respectively a
tangent vector ficld on N and a cross-section in T(N) > N. We set PX =
tan(f X), F X = nor(f V) and f V = nor(f V). The following identities hold
as direct consequences of definitions:

PP+tF=-1+n e, FP+fF=0, Pt+tf=0,
Ft+f=-1, fs="Py¢ F¢=0, 4.1
£ =FA P =o.
Using (2.5) and the Gauss - Weingarten formulae of N in M>** one obtaines:

(DXP)Y=WFYX+th(X Y) +

Lot {IGX, V) - 1,00 7°(] ¢, - [X - 7,0 &1 1,00} “.2)
for any tangent vector fields X Y on N. Let X,Y € Q'L As D is torsion-free
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and by (4.2) one obtains:

PIX, Y] = Wy Y- Wpy X + " XAV + (1, An) X V) )@
At this point we may establish the following:

LEMMA

Let (N, @, @1 ) be a framed C.R. submanifold of the Pmanifold M*™**. Then:

Wiy Y = Wy X + 2a'{n 0 Y - n, (V) X - (1,00 n,(¥) - n,(V) 1,001 &%} @.4)

for any X, Y € Q'L.

Proof. By (4.1), P vanishes on @1, Using (4.2), for any X, Y € @1, Z € T(N),

one has:
0 = G((DL P)X, Y) = G(Wgy Z,Y) + G(t h(Z, X), Y) +
+1a* {GEZ, X 1, (V) - GEZ, V) 1,0 + 1,0 n°(Y) - n, () n°CO] 0, (@)}
and finally G(t h(Z, X), Y) = - G(Wgy X, Z) leads to (4.4). N
By (4.3) and the above lemma we conclude P[X, Y] = 0, i.e. D is
involutive.
Let us prove now ii) in theor. A. We analyse for instance the case s
even. Let N a framed C.R. submanifold of H****. Let
s/2 ¢
.9=P4;l£nioti.-ni_oti}, #t = F @.5)
Next .?J‘ & = F P = 0, and one applics theor.3.1 of [7], p.87. The case s odd
being similar is left as an exercise to the reader. To prove the converse of
ii) in theor.A we need to characterize framed C.R. submanifolds as follows.
Let N be a framed C.R. submanifold of an $manifold M***’. Then (4.1) leads to
P¢=P,FP =0,fF = 0, ectc. Onc obtaines the following statcment. Let N be
a submanifold of the Pmanifold M*™* such that N is tangent to the structure
vectors &. Then N is a framed C.R. submanifold of M™** if and only if F P =
0. We have proved the necessity already. Viceversa, let us put by definition ¢
=-P’+q. ® {‘,rl' =I-I.SinchP=0,theprojections(,lJ' make N
into a framed C.R. submanifold, Q.E.D. Now the converse of ii) in theor. A is
easily seen to hold, i.c. both C.R. submanifolds of (H’"“, g, %, s even, and
contact C.R. submanifolds of (H™*', ¢, &, n, %), s odd, arc framed C.R.
submanifolds.
REMARKS
1) Let (N, @, L) be a framed C.R. submanifold of H®*'. By (4.5) ome ob-
tains:
PP =P -n" e & 4.6)
Now the notion of framed C.R. submanifold appears to be essentially on old
concept. For not only N becomes a C.R. submanifold of the Hermitian manifold
Hz"", if for instance s 1is even, but its holomorphic and totally-real
distributions are precisely P, Q'L. Indeed, by (4.6) one has L= 4 Q.E.D.
2) Due to (3.4) there is a certain similarity between $manifolds and locally
conformal  Kachler manifolds, cf. P.LIBERMANN, [26]. Seec also [12]. For
instance, we may use the ideas in [2] (cf. also theor. 3.4 of [7], p.89) to
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give an other proof of the integrability of the f-anti-invariant distribution
of a framed C.R. submanifold. Indeed, let N be a framed C.R. submanifold of

H™* seven. Let X € @, Z, W € 9. By (3.4) one has 0 = = 3(d ;)(x, Y, W)
= - G(Z, W], J X). Hence [Z, W] € @ . Note that, although N is C.R. in the
usual sense one could not apply theor.3.4 or theor.4.1 of [7] (p.89-90) since
H*** is neither locally conformal Kaehler nor Kaehler.

To establish iii) let N be an f-invariant submanifold of H>*®. As
a consequence of (2.5), for any tangent vector fields X, Y on N one has:

Og DY = ;o {I[GX, V) - 2, n°M] &, - X - 1,0 1, N} @)

hX, £ Y) = f h(X, Y). 4.8)

Let k(X, Y) be the Riemannian sectional curvature of the 2-plane spanned by

the orthonormal pair {X, Y} on N; using the Gauss equation, i.c. equation

(2.6) in [24], (p.45), and the notations in [4], (p.161), ie. HX) = kX,
fX), X € &£, one obtains:

1-3s=HX +21lhX, X 11* 4.9)

as H™'* has constant f-sectional curvature, (cf.[8], p.173). By (2.15) and

f-invariance one has h(X, C.) = - i @ nor(f X) = 0; a standard argument based
on (4.8) leads to the proof.

To prove iv) onec uses D h = 0, (2.15) and f-invariance, i.c. onc has
h((DX {., Y) = 0. Thus @, h(f X, Y) = 0, by (2.14). For some a = 0 one uses
(4.7). Finally, apply once more f and notice that n vanish on normal
vectors. Thus h = 0.

REMARK

Let & be the canonical foliation of H****, Let N be a framed C.R. submanifold
of H®"** as above. Then @ < & ie the totallyreal foliation of N
(regarded as a C.R. submanifold, s even) is normal to the characteristic field

25 Zn+s . 1 . 1
L€ -¢&,) of H"! Indeed, since { € P, the n vanish on D Thus
im]

wofL=0.

5.- THE CHEN CLASS OF A CAUCHY-RIEMANN SUBMANIFOLD.

Let M be a C.R. submanifold of CP". Let # : N > M be a T'- fibration, as
in theor. B. Assume s is even. Then N is a C.R.submanifold of H™** and its
totally-real distribution is integrable. We shall need the following:

LEMMA

The holomorphic distribution of N is minimal.

Proof.

Note that we may not use lemma 4. in [17] (p.169) since its proof makes
essential use of the Kaehler property. Neither could one use corollary 2.3 of
[27] (p.291), (although Qé c &) since (g, ¥ fails to be locally conformal
Kaehler. Now (2.4) - (2.5), (3.1) lead to:

@x H Y =} {16, V) - 1,0 "] £ -

- X - 1,00 &1 10} - ; {EX, V) B + o) f X } CBY
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where n = i':n. , & = n'. Let X € Dy » Z e Qﬁ. Using (5.1) we have:
a=1
(Z, Dy X)=9({Z 4Dy X) =9(gz,gxgm=9(ngx,g)().

Thus: ¢ (Z, D X+D ZX) =0and QN follows to be minimal. Lctp—dlm D.
Let {X 1 s A < 2p} be a real orthonormal frame of &, where X ==X,
1 <i < p. Then {X » ¢} is an orthonormal frame of Py Let A%, 1 s A = 2p,
be differential l-forms on N defined by AA(X) = 6‘ AA(Y) 0, for any
Y € @p. Let A = = ' ALA AP A0t ALA 7 Then A is a globally defined
(2p+s)-form on N, as QN is orientable. We leave it as an exercise to the
reader to follow the ideas in [17] (p.170) and show that since Py is minimal
and 9# integrable the (2p+s)-form A4 is closed. Thus A determines a cohomology
class c¢(N) = [A] € H®*(N; R) refered to as the Chen class of N.

To prove theor. B suppose M is a C.R. product, i.c. M is locally a
product of a complex submanifold and a totally-real submanifold of CP", see
e.g. [28], (p.63). Now C.R. products have an integrable holomorphic
distribution and a minimal totally-real distribution. By (2.8), for any
tangent vector fields X, Y on CP" one has:

x5 Y = X, YI* - o X", YY) & . 5.2)

Then (5.2) used for X = XA , Y = Xn leads to [X X ] € QN Next, as
X: = 0 one has

g1 = @ #H X - # Dy s, 5.3)
We need the following : '
LEMMA
The covariant derivative (DX .?‘L )Y = Di .?J' Y - .7"' Dy Y of ?J‘ is expressed
by:

(DXQJ')Y=-h(X,9'Y):fh(X,Y)-ia)(Y)FX (5.4

~
for any tangent vector, fields X, Y on N. Here f V = nor(d V) for any
cross-section V in TIN)™ > N.

Proof.
Let also t V = tan (g V). Using the Gauss and Weingarten formulae of N in

H™** one has:
Dy HY = Oy AY - Wyly X - thX, Y) +
+ DOy #HY + b(X, 2Y) - £ b(X, ) .5)

Let us use (5.1) to substitute in (5.5); a comparisson between the normal
components in (5.5) leads to (5.4), Q.E.D.

Now we may use the above lemma to end the proof of the involutivity of
9 . Indeed, by (5.4) and (2.4) our (5.3) turns into:

srl[x" L1l=-b¢,, 2XY +fh @, x H-loxMF &+ o FEX, (5.6
and by . 15) one obtames .?i [X"l , {]
The last step is to establish mxmmahty of QN Let ¢ = dim, Q'L, X € M.
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If {Ei: 1 s i < q} is an orthonormal frame of @1 then (2.8) yields:

E

3 H
4 L DgnEl ={
=1 4 i

1 - H
L VgEY"}. 6.7
+ i

But QJ' is minimal, so the right hand member of (5.7) is zero. Finally, one may

follow the ideas in [17], (p.170) to show that since Py is integrable and Q#
minimal the (2p+s)-form A is coclosed. As N is compact, A is harmonic. Thus
¢(N) = [A] # 0, and our theor. B is completely proved.
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