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I. INTRODUCTION.

This paper is concerned with the oscillatory behavior of solutions of the third

order nonllnear difference equation

a(Pna2Vn) + Qnf(Vn+l AVn+I, A2vn+1) -0, n- I, 2, ..., (.i)

where & is the forward difference operator i.e., &V
nV+I -V It will be assumed

n n
throughout that the conditions below are satisfied:

(I) P > O, AP > 0 and Qn > 0 for n O, 1, 2,
n n

(II) [

R
3(III) f: R is continuous and xf(x, y, z) > 0 for x * O.

By a solution of (I.I) we mean a real sequence V satisfying equation (1.1) for

n 1, 2, A solutlon V of (1.1) is called nonoscillator if it is eventually

positive or eventually negative. Otherwise, it is called oscillatory. The problem of

determining oscillatlon criteria for certain second order nonllnear difference

equations has been investigated by Hooker and Patula [1], and Szmanda [2]. The

results of [2] were generallzed by Li [3]. This paper examines a sllghtly more

general equation than those studied in [2] and [3]. The authors began a study of

slmilar equations in [4].
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2. MAIN RESULTS.

LEMMA 2.1. Suppose V is a nonoscillatory solution of (1.1). Then, either

sgnV
n

sgn&V
n sgnA2Vn (2.1)

for all n sufficiently large, or

sgnV
n

sgna2V # sgn&V
n n

(2.2)

for all sufficiently large n, and llm AV llm &2V 0.
n n

PROOF. Assume V is a nonoscillatory solution of (1.1), where Vn > 0 for all

n N, where N is a positive integer. The proof is similar if V. < 0 for all n N.

Note that (Pn2Vn -Qnf(Vn+l, Vn+I, 2Vn+I) < 0, for each n ) N. Thus Pn &2Vn is

decreasing and is eventually sign definite. A positive integer M ) N exists for which

AV and AZV are of one sign when n ) M. The following cases must be considered:
n n

(a) Vn > 0, &V
n > 0, 2Vn > 0, n M,

(b) V > O, &V < O, A2V > O, n )M,n n n

(c) V > 0 AVn < 0, A2V < 0, n )M

(d) Vn > 0, &V
n > 0, A2Vn < 0, n )M.

Case (c) is impossible because if AV A2V > 0 for all sufficiently large n, then
n n

sgnV
n -sgnAVn eventually. We show that (d) is also impossible. If (d) holds, then

from above P 2V is negative and decreasing for all n sufficiently large. Let k < 0
n n

be such that P A-V < k for all n M. Then A2V < --, n M. Summing from M to R-
n n n

we obtain
n

R-I

&VR AVM < k . --n n

Letting R + implies AVR is eventually negative, but this contradicts (d), therefore

(d) cannot hold. This completes the proof of the lemma.

We continue our study of (1.1) by considering a functional which plays a vital

role in our investigation. Similar functionals have been used to study solutions of

differential equations (Taylor [5]).

LEMMA 2.2. Let V be a solution of (I. I). Then

F[Vn] Fn 2VnPnA2Vn Pn-I(AVn)
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is nonlncreaslng, in fact

AFn -2QnVn+If(Vn+l’AVn+l’ &2Vn+l) Pn(&2vn)2 APn_I AVn)2

Since Fn is monotone for any nontrivial solution of (I.I) we have that Fn is of

one sign for all n sufficiently large. Using this we will examine solutions of (I.I)

where F ) 0 for each n and those for which Fm < 0 for some positive integer m.
n

THEOREM 2.1. Let V be a nontrivial solution of (I.I) for which F[Vn]__ )0. Then

the following are true:

(i) )" QnVn+lf (vn+l’ AVn+I’ A2Vn+l < (R)’

(ii) [ Pn(A2Vn)2 < (R), and

(ill) ). Apn_ (aVn)
2 < -.

PROOF. Since F > 0 for each n differencing Fn and summing from 0 to k-I we find

k-I
0 F

k FO 2 QnVn+l f (vn+l’Avn+l’ A2Vn+I
0

k-I k-I

Pn(A2Vn)2 APn_I(AVn)2.
Thus,

0 0

k-1
2 QnVn+if(Vn+l,AVn+l, A2Vn+l +

0
k-I k-I

Pn(A2Vn )2 + APn-I(AVn)2 < F0"
0 0

Allowing k to tend to infinity establishes each of (1), (li) and (ill) since F0 is

independent of k.

THEOREM 2.2. Suppose that f(x,y,z)
) r > 0 for x 0 and lim inf > O. Let V

x
be a solution of (I.I) for which F[Vn] 0 for each n. Then

<iv) [ v2 <.,
n

(v) llm V llm AV lira A2V O.
n n n

PROOF. To prove (iv), observe that

Vn+if(Vn+ AVn+ A2Vn+l ) rV2n+l
Thus

where lim inf Qn’ so we have
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ar V2 f( AV A2Vn+I )"
0

n+l QnVn+l Vn+l’ n+l’

Now apply (i), of Theorem 2.1, and the proof of (iv) is complete.

The relations (v) follow as a consequence of (iv).

EXAMPLE 2.1. As an illustration of Theorem 2.2 consider equation (1.1) with Pn n,

22n(_.___n-l) f(x,y,z) x3 + x.0-n 2n+22 +

Then

A(nA2Vn) + 22n(n-1) 3 + 0
22n+2+1 (Vn+l Vn+

The sequence defined by 2-n is a solution of this equation for which F 0 as n -.

THEOREM 2.3. If f(x,y,z.) r > 0, and Qn then every nonoscillatory
x

solution of (1.1) approaches zero as n / -.
PROOF. Suppose V is an eventually positive solution of (1.1) that is bounded away

from zero, i.e. V > > 0 for all n sufficiently large. Because of Lemma 2.1, an
n

integer M exists so that the relations (2.1) or (2.2) are satisfied by V for all

n > M. Now f(Vn+l, AVn+I, A2Vn+l rVn+ where r is a positive constant. From (1.1)

we find

&(Pn&2Vn) -Qnf (Vn+l’ AVn+l’ A2Vn+l )"

ThUS,

A(PnA2Vn) -rQnVn+1. (2.3)

Summing both sides of (2.3) from M to k-1 we find

PkA2Vk ( PMA2VM
k-1 k-1

(2.4)

But as k -, the right hand side of (2.4) tends to -, which in turn forces PkA2Vk
to tend to -, and hence A2Vk < 0 eventually, a contradiction of relations (2.1) and

(2.2). A similar argument treats the case of an eventually negative solution. This

completes the proof of the theorem.

COROLLARY 2.1. If f(x,y,z)_ ) r > 0, for x O, and Qn , then every
x

nonosclllatory solution of (I.I) satisfies the relations (2.2).

We are now in a position to show that oscillatory solutions exist under certain

conditions.

THEOREM 2.4. Suppose f.(.x,y,z) r > 0, for x 0, Qn "’ and Pn is bounded.
x

If V is a solution of (I.I) for which F[Vn] < 0 for some n, then V is oscillatory.

PROOF. Suppose V is a nonoscillatory solutlon of (1.1). We may suppose without

any generality loss that Vn > 0 and F[Vn] < 0 for all n N, since F[Vn] is

nontncreasing as n -. From Theorem 2.3, V / O, AV 0 and A2V 0 as n -.
n n n
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This together with the boundedness of Pn implies that F[Vn] / 0. This is clearly

impossible since Fn < 0 and AF < 0 for large n and the proof follow by
n

contradiction.

Under certain conditions the bounded solutions of (I.I) behave rather nicely.

Similar results appeared in [2] and [3].

THEOREM 2.5. Suppose nQn and Pn 3, constant. Then every bounded

solution of (1.1) is either oscillatory or tends to zero notontcally.

PROOF. By Lemma 2.1 a bounded nonoscillatory solution V satisfies

sgnVn sgn P A2V sgn AV
n n n

for all n sufficiently large. Assume that Vn > 0 eventually and suppose

lim AV A
0
where Ao > 0. Note also

n

The fact that P A2V 0 as n follows from the boundedness of Vn and (II).
n n

Consider the sequence rn n(PnAVn)" Note that

&rn Pn+lA2Vn+l nQnf(Vn+l’ AVn+1’ &2Vn+1 )" (2.5)

Since f is continuous f(Vn+l, AVn+I,__ A-Vn+I) f(A0, 0, 0) > 0 as n -, so there

exists N such that

f(Vn+l, AVn+l, A2Vn+I) > 1/2f(Ao, O, 0) for all n > N.

Therefore from (2.5) we have

Ar < A2Vn+1n Pn+l -- Qnf(Ao O, O)

0f(Ao o, o).< A2Vn+ -. n

Summing, from N to n
n

rn+1 < rN + AVn+2 VN+I 1/2f(A0’ 0, 0) JQj.

As n -, rn -, a contradiction. Therefore A
0

0. This completes the proof of

the theorem.

Finally we have

.(R) a
2m+ITHEOREM 2.6. Suppose Qn (R), f(ax, ay az) f(x,y,z), a 0 and

f(x, y + h, z) > f(x,y,z) for h Y 0. Then every solution of (1.) is either

bounded or oscillatory.
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PROOF. Suppose Vn is an unbounded nonoscillatory solution of (I.I). Without loss

of generality we have

V > 0, AV
n > 0, P A2V > 0,

n n n

for all n sufficiently large. Consider the functional

p 2V
n nqn V

n

Differencing qn we find

2Vn+ V 2V
n n n

al
-Qnf(vn+l’ AVn+I’ )_ P

n Vn+ VnVn+
v+ +)
n+I_ Vn+

AZVn+I2m
f(lVn+ 0, Vn+

2mVN Qnf(l, 0, 0)

2

Summing we obtain

2m
V
N f(l,0,0) m-I

qmK0 2 IQn"
N

But this implies qm as m (R), a contradiction since Pn’ A2vn and Vn are positive

for all n sufficiently large.

EXAMPLE 2.2. It is possible for equations of the form of (I. I) to have unbounded

oscillatory solutions. The sequence Vn (-2)n is a solution of

A3V + II 3
(AVn+1) + 3Vn+1 0.

n 18(4n+I)
Note that this example does not violate the conclusion of Theorem 2.6. Note also that

(III) is not satisfied.
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