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ABSTRACT. In this paper, we study the Fr4chet theorem in the set of measure

preserving functions over the unit interval and show that any measure preserving

function on [0,1] can be approximated by a sequence of measure preserving plecewlse

lnear continuous functions almost everywhere. Some appllcatlon is included.
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I. INTRODUCTION.

A theorem of Frchet states that for every measurable function f(x) which is

defined and is finite almost everywhere on the closed interval [a,b], there exists a

sequence of continuous function converging to f(x) almost everywhere (Natanson [I]).

In certain applications it is important to know whether a Fr4chet-type theorem holds

when the functions involved are measure preserving functions. In this paper we show

that every measure preserving function f on [0,1] can be approximated by a sequence of

plecewlse llnear measure preserving continuous functions almost everywhere. More

preclsely, given a measure preserving function f on [0, I], there exists a sequence of

plecewlse linear measure preserving continuous functions converging to f almost

everywhere. The next section contains the proof of this assertion. Furthermore, we

show that every measure preserving function can be approximated by a sequence of

plecewlse linear one-to-one measure preserving functions almost everywhere. Also

included are some applications of the results.

2. FRECHET THEOREM IN THE SET OF MEASURE PRESERVING FUNCTIONS OVER [0, I].

Let m denote the Lebesgue measure on [0,I]. Let f be a measurable function from

a closed set B to B. f is said to be measure preserving on B if for each Borel set

A c_ B, m(f-l(A)) m(A). This notion can be further generalized. Let I and 2 be

probabillty measures defined on close sets B and B2, respectively. A measurable
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function f from B to B2 is said to be measure preserving from (BI,I) to (B2,2) if

Borel set A of B2, pl(f-l(A)) 2(A). We now state the main result of thisfor every

section.

THEOREM 2.1. For every measure preserving function f over [0,I], there exists a

sequence of piecewise linear measure preserving continuous functions converging to f

almost everywhere.

To prove this theorem, we need several preliminary lemmas. The following lemma

of Rlesz can be found in Royden [2].

LEMMA 2.1. Let {f be a sequence of measurable functions which converges in
n

measure to the function f. Then there is a subsequence {f which converges to f
n
i

almost everywhere.

LEMMA 2.2. A measure preserving function f on [0,I] is monotone nondecreasing

(nonincreasing) if and only if f(x) x (f(x) x).

PROOF. Suppose f is monotone nondecreasing. Since f is measure preserving, f

must be strictly increasing and

x m([0,x]) m(f-l[0,x]) m([0,f-l(x)]) f-l(x).
The nontncreastng case can be proved similarly.

LEMMA 2.3. If f is a piecewise linear continuous function from [0,1] to [0,1],

then f is measure preserving if and only if for 0 y but a finite number of

values of y, mI 1, where the summation is taken over all the elements xt of
x
i

the finite set {xi: f(xi) y} and mi is the slope of the line segment on the graph of

f through the point (xt,Y).
REMARK 2.1. Those points y for whcih mi is not well-deflned are contained in the

exceptional set.

PROOF. Suppose that the graph of f is made up of k line segments with k +

endpoints, which are defined according to the partition on [0,I]. Let ml, i k

be the corrsponding slopes. Consider a y, 0 y 4 I, such that y is not the ordinate

any endpoint. It is easy to see that f-l({y}) {xilf(xl y} is a finite set.of

Each point (xi,Y) is an interior point of some llne segment lying on the graph of f.

Let > 0 be small enough such that the interval [y,y + 6] does not contain the

ordinate of any k + endpoints as its interior point. Then

f-1([y,y + 6]) O -I [ai’bi]’
x
i

f

where f([ai,bl]) [y,y + 6] and one of the ai, bi is xi. If f is measure preserving,

then

m(f-l[y,y + 6]) . m([ai,bi])

xi f ({y})
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Thus

xi f ({y})

Conversely, if [ T for all 0 y except for y being the
I,

-I

ordinate of one of k + endpolnts. For an arbitrary interval [a,b]c [0,I] which does

not contain ordinate of any endpoint, we have

m(f-l([a,b])) m(U [xi,x] . m([xi,x])- :b-,,)/Im.
xt

(b a) [ - b a m([a,b])
x
i
-i|

where the summation is over [xi,x’ i] such that

f([xl,x’i]) [a,b].

For general [a,b], the proof follows by partitioning [a,b] as

[a,b] [a,y I)U [YI’Y2 U U [Yn-1’Yn)U [Yn,b],
where YI"’’’Yn are ordinates of endpolnts of llne segments lying on the graph of f.

Furthermore none of the above subintervals contains ordinates of endpolnts as an

interior point. Now

-I -I
m(f [a,b]) m(f ([a,yI)U U [Yn,b])

-1 -I
m(f [a,Yl)) + + m(f [Yn,b))

(Yl -a) + + (b- yn

m([a,b]).

Hence f is measure preserving.

PROOF OF THEOREM 2.1. In the first part of the proof, we show that for

arbitrarily small numbers 6 > 0, > 0 we can construct a measure preserving plecewise

linear continuous function such that m({x: If(x) (x) > 6}) < .
Choose a natural number n, < 6 and consider the sets

n

E
i

{x: (i I)
4 f(x) < i (n t)

n } i l,...,n- 1, E {x: f(x) 1}.

Since f is measure preserving, m(Ei) , i 1,...,n. These sets are measurable and
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n
palrwlse disjoint and [0,I] U Ei. For each i, choose a closed set Fic_ Ei such

n
that m(Fi) > m(Ei) 2n n 2n

and set F U Fi. It is clear
i--I

n
[0,I] F U (g

i
Fi), and therefore,

n
<

Since [0,I] Fi is an open set of [0, I], it is equal to the union of countable

disjoint open intervals in [0,I]. If [0,I] Fi is the union of finite disjoint open

intervals, Fi is the union of a finite number of disjoint closed intervals. If [0,I]

Fi is the union of an infinite number of open intervals, consider the set

Li {1j}j of all endpolnts of these open intervals. By the Bolzano-Welerstrass

{j’}, the set of all limit points of Li, is nonempty. For a pointTheorem, L
i
two cases can be consideredEL

i
(i)If there exist two sequences of points in Li; one converges to from the

right and the other converges to A from the left, then we construct an interval

Iij (aj,bj) with aj,bj belonging to some open intervals of

[0,i] -Fi, aj < < bj, bj -aj < e/(2J+In).
(ii) If there exists only one sequence of points of Li converging to ’j from the

right or from the left, then construct the interval

Iij (,bj)with bj < /(2J+In)
for the former and the interval

lij (aj,) with -aj < /(2J+In)
for the latter case, where aj, bj are elements of [0,I] Fi.

In any of these cases, append the resulting interval to [0, I] Fi. It is clear

that ([0, I] Fi)U( U Ii4J is an open set of [0,I] and is the union of a finite

J
number of open intervals of [0, I]. Then

,
F
i

[0,I] (([0,I] Fi) U Uj lij)) is a closed set of [0,I] and is equal to the

union of a finite number of closed intervals. Furthermore

Thus without loss of generality, suppose that each Fi has the property that Fi is the

union of a finit number of disjoint closed intervals of [0,I],

n
i

F
i

U [aij,bij], where
J=l

all < bll < ai2 < hi2 < < ain
i

< bini, and
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n
i_I > m(Fi [ (blj aij) > , i l,...,n.n

J=l

On F, we define a function @n(X) as follows. Restricted to each Fi, the

function @n(X) is linear on each interval [alj,bij] with the absolute value of the

slope equal to That is it linearly maps [a
n(blj aij)

i i] Ntethatn--n
n
t

[ (blj ai m(Fi <
J=l

implies

iJ’ bij] onto the interval

1 [ (bij alj)n > and < I.
bij aij 1

It is trivial that we can extend @n to the whole interval [0,I] by adding a

finite number of line segments to form a piecewise linear function h satisfying the

slope condition in Lemma 2.3. Then by Lemma 2.3, n is measure preserving. Also

m({x: If(x) -n (x)l > }) m([O,l] F) < e.

Since I_ <n
m({x:

To complete the proof of the theorem, Just choose two null decreasing sequences {6
n

and {e of positive numbers. For every n, we construct a measure preserving
n

piecewise linear function On such that

m({x: If(x)- ,n(X)l ) %}) < g"n
It is clear that n converges to f in measure. In fact for any 6 > 0, there is a

natural number no such that for all n

m({x: If(x) -n(X)l )})< m({x: If(x)- Sn(X)I )6n }) < e.

By Lemma 2.1, there is a subsequence {nk} of {n converging to the function f almost

everywhere.

We remark that with a minor change in the construction of the function n in the

proof of Theorem 2.1, the following result is obtained.

THEOREM 2.2. Let f be a measure preserving function over [0,1]. Then there

exists a sequence of one-to-one piecewlse linear measure-preserving functions over

[0,I] converging to f almost everywhere.

PROOF. The proof is similar to that of Theorem 2.1. The only detail changed is

the construction of n" This time over each Fi we approximate the function f by a

one-to-one function from Fi to r[i-n I, i] and on each [aij,bij] it is linear with

slope or -I. Then we extend the function to n on [0,1] by adding a finite number

of line segments with slope or -I and keep the one-to-one property. It is clear

that n is measure preserving since the slope condition in Lemma 2.3 is satisfied.
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Theorem 2.1. has several interesting applications. One can use it to study a

certain dynamic system arising from the so-called tent function (Devaney [3]) mapping

from unit interval onto unit interval. To be in line with this paper we given an

application arising from probability. Let B represent a probability measure on an

interval B. The distribution function of the measure B is defined as

F (x) (B fi (-,x]), for all x E B, and is a right continuous nondecreasing

function, 0 F (x) I. If does not have any atom point, F is a continuous

function on B. For an arbitrary probability measure B on B, B is completely defined

if and only if F is defined. In the case of having no atom point, i.e., F is

continuous, is a function from B onto [0,I]. In this case, the function F is

defined by F (y) inf{x: F (x) y},

for all 0 y I. Hence

-X(y)]) Y m([0,y]).(Fl([0,y])- u(B A (-,F
Then F is a measure preserving function from (B,) to ([0,1],m).

COROLLARY 2.1. Let I and 2 be probability measures without atom points on

closed sets B and B2, respectively. Let f be a measure preserving function from

(BI,BI) to (B2,2). Then there is a sequence of measure preserving continuous

functions from (BI, I) to (B2,2) that converges to f almost everywhere.

PROOF. F and F are continuous functions on B and B2, respectively.
1 2

Then F o f o F-1 is a measure preserving function on [0,1]. By Theorem 2.1, there
2

is a sequence of measure preserving piecewise linear continuous functions @n over

[0,1] converging to F o f o F-1 almost everywhere. The sequence of continuous
2-1

is measure preserving from (BI,1) to (b2,2) and convergesfunctions F o n o FI2 -I
to the function f almost everywhere, since F and F are continuous functions.

I 2
Of course, a corresponding corollary to Theorem 2.2 can be formulated for a

measure preserving function from (BI,I) to (B2,2).
Let F be the set of all measure preserving functions from ([0,I],I) to

([0,i],2). 2There is one further problem one can try to investigate. That is, what

are the conditions on I and 2 so that F F , the empty set and the
BI,B2

conditions for f A f x,l x}? m,m

BI,2 m,m
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