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ABSTRACT. In this note we establish the existence of Pareto optimal solutions for nonlinear,
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criterion taking values in a separable, reflexive Banach lattice. An example is also presented in

detail. Our result extends earlier ones obtained by Cesari and Suryanarayana.
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1. INTRODUCTION
In recent years there has been an increasing interest in optimization problems with

multiple objectives conflicting with one another. The subject has its origins in mathematical

economics and in particular in welfare theory and from there it passed into other subjects like

game theory, operations research, optimization and optimal control.
Such problems, in the context of optimal control theory, were recently considered by

Cesari and Suryanarayana in a series of interesting papers [5], [6], [7]. We should also mention

the earlier work of Olech [9], who, motivated from the fundamental work of Cesari [4], studied

similar problems in IRn.
The aim of this note is to extend the finite dimensional existence result for Pareto

solutions of Cesari-Suryanarayana [5], to infinite dimensional control systems. Exploiting
some recent results on the extended Fatou’s lemma, obtained by Balder [1] and Papageorgiou
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[11], we are able to prove the closedness of a certain orientor field and through that establish

the existence of Pareto optimal solutions.

2. PRELIMINARIES
Let (,E) be a measurable space and X a separable Banach space. Throughout this

note we will be using the following notations:

and

Pf(c)(X) {h c__ X: nonempty, closed, (convex)}

P(w)k(c)(X) {A c_. X: nonempty, (w-)compact, (convex)}.

A multifunction (set valued function) F: -, Pf(X) is said to be measurable if and only

if for all y X, w- d(y, F(w)) inf{lly-xll: x F(w)} is measurable. If there exists a a-finite

measure (.), with respect to which E is complete, then the above definition of measurability

is equivalent to saying that GrF {(w,x) e X: xeF(w)} ZB(X), with B(X) being the

Borel a-field of X (graph measurability). For further details on measurable multifunctions

we refer to the survey paper of Wagner [16]. By S we will denote the set of selectors of

F(.), that belong in the Lebesgue-Bochner space LI(x) i.e. S {f LI(x) f(w) F(w)

#-a.e.}. This set may be empty. However if F(. is integrably bounded (i.e. F(.) is

measurable and w IF(w)l sup{llxll" x F(w)} e L), then S # q). Using S we can

defineaset valuedintegralfor F(.) bysetting F(w)d(w)= {I f(w)d(w)" f S}.
Let Y,Z be Hausdorff topological spaces and let G:Y 2Z\{t)}. We say that G(.) is

upper semicontinuous by inclusion (u.s.c.i.), if for all Yn y in Y G(Yn) {z Z:

z lim znk’ znk e G(Ynk), n < n2 < ...} c__ G(y).

Finally, in the next section we will be using some notions and results from the theory of

ordered vector spaces. For the necessary background we refer to the books of Peressini [14] and

Schaefer [15].

3. EXISTENCE THEOREM
Let Y be a locally convex vector space with a partial order induced by a nonempty,

closed, convex and pointed cone Y+. For y, y’ e Y’ we write y _< y’ if and only if y’-y

Y+. Let A c_ Y. A vector x0 K is said to be Pareto efficient for A, if (x0-Y+) N ),

where Y+ Y+\(0}. So the Pareto efficient (or Pareto optimal) points of A, are those

points of which are minimal for the partial order induced by Y/. The set of Pareto

efficient points of A will be denoted by Eft(A).
Recall (see Penot [13] or Peressini [14]), that (Y, Y+) is (countably) Daniell if every

decreasing (sequence) net bounded from below, has an infimum and converges to that infimum.

The class of Daniell ordered spaces includes the following ones:
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(a) All ordered vector spaces which have compact order intervals (resp. weakly

compact, if the order is normal).
(b) All semi-reflexive ordered vector spaces, with normal order.

(c) All ordered vector spaces, with Y/ complete and having a bounded base B s.t.

0 I t (in particular then, if Y/ is locally compact).

(d) All (countably) order complete Banach lattices, unless they contain a lattice

isomorphic to .
Note that every (countably) Daniell space is (countably) order complete.

The following existence result is well known among people working in Pareto

optimization (see for example Penot [13]).
PROPOSITION" If (Y,Y/) is a Daniell vector space and A c_ Y is nonempty and

bounded below,
then Eft(A) # ).

Now let T [0,b], a bounded, closed interval in JR+, X a separable Banach space (the

state space), Z another separable Banach space (the control space) and Y a separable,

reflexive, order complete, Banach lattice.

We will consider the following infinite dimensional, nonlinear control system:

[(t)=A(t)x(t)+ f(t,x(t),u(t))](.)x(0) x0, u(t) e U(t,x(t))a.e.

By a solution of this system, we will understand a mild (integral) solution. A pair of

functions x(.) e C(T,X) and u(.) LI(z), that satisfy the dynamic constraints (*), are said

to be an "admissible pair". In particular x(.) is an "admissible trajectory", while u(.) is an

"admissible control". We will denote the set of admissible pairs by A(x0). Finally note that

system (*) has feedback type constraints, since the multifunction U(.,-) depends also on the

state.

To this control system, we associate a Y-valued cost criterion of the following form:

b
J(x,u) | L(t,x(t), u(t))dt

J0

with L" TXZ Y.
Our goal is to prove a theorem saying that every vector in Eff(J(A(x0))) is realized by

an admissible pair.

To this end, we need the following set of hypotheses on the data of the problem.
H(A): {A(t)" e T} are linear, unbounded operators on D(A(t)) c_ X, that generate a

strongly continuous evolution operator S(t,s) e .2’(X), 0 _< s _< _< b, which is compact for

t--s > 0.

H_: f: TXZ X is a function s.t.

(1) t f(t,x,u) is measurable,
(2) (x,u) - f(t,x,u) is sequentially continuous from XZw into Xw (where Xw,
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Zw denote the Banach spaces X, Z with their respective weak topologies),

(3) IIf(t,x,u)ll < a(t) + b(t) (llxll + Ilull) a.e. with a(.), b(.) e L+.
H(L): L: TxXxZ Y is a measurable function.

H(Q): For every (t,x) e TxX, the set Q(t,x) {(v,r/) e XY: v f(t,x,u), u U(t,x),
L(t,x,u) < r/} is convex and x Q(t,x) is u.s.c.i, from X into Xw.

H(U)" U: TxX efc(Z) is a multifunction s.t.

(1) (t,x) U(t,x) is measurable,
(2) x-, U(t,x) is u.s.c.i, from X into Zw,

(3) U(t,x) c_ W a.e., where W Pwkc(Z).
Ha: A(x0) # q) (i.e. there exist admissible "state-control" pairs).

Hb: J(A(x0) is order bounded in X.

Hypothesis Ha is a controllability type hypothesis, while hypothesis Hb is satisfied if

for example IL(t,x,u)l < a’(t) + b’(t) (llxll + Ilull) a.e. with a’(.), b’(.) LI(y+). Recall

lYl =Y++Y--
THEOREM 1: If hypotheses H(A), H(f), H(L), H(Q), H(U), Ha and Hb hold,

then Eff(J(A(x0))) # ) and every element in this set can be realized

by an admissible "state-control" pair.

PROOF: Recalling that a reflexive Banach lattice is a Daniell space and using
hypothesis Hb and the proposition, we deduce that Eff(J(h(x0))) # ).

Let e e nff(J(A(x0))). Then by definition e e J(:A(x0) ). So there exist Yk e J(A(x0) ),

k>l s.t. Yk _s e. We have Yk J(Xk’Uk)’ with (Xk,Uk) A(x0) for all k>l.

Our claim is that {Xk}k>l is relatively compact in C(T,X). To this end, we will first

determine an a priori bound for the trajectories of (*). So let x(. e C(T,X) be such a

trajectory. We have

x(t) S(t,O)x0 + S(t,s)f(s,x(s)), u(s))ds, T, u(’)e SI(.,x(.))0

-< IIS(t’O)xoII + I IIS(t,s)I1.11 f(s,x(s),x(t)] ds
0

:=v IIx(t)ll _< M IIXoI + M | [a(s) + b(s)(llx(s)ll + Ilu(s)ll)]ds (since IIS(t,s)ll _< M)
J0

t
_<M(llXoII+llall 1+ IWI.IIDII1)+M b(s)JJx(t)JJ ds

0

(IWl :sup{lul’ueW})

Invoking Gronwall’s inequality, we get that JJx(t)Jl _< M for all T and all

trajectories x(.) of (*). Next let t, t’ e T, _< t’. For any (x,u) e N {(xk, Uk)}k>l c_. A(xo)
we have
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t’ rt
]]S(t’,0) x0 + J

| S(t’, s) f(s,x(s), u(s)) ds- S(t,0) x0 -| S(t,s) f(s,x(s), u(s))
0 J0

t’
_< IlS(t’,0)x0 -S(t,0)x0] + | ]ls(t’,s)ll. IIf(s,x(s), u(s))]l ds

J

/ | IIS(t’,s)- S(t,s)l[. [[f(s,x(s), u(s))l[ ds
J0

Let us estimate the three summands in the right hand side of the above inequality.

Because of the strong continuity of the evolution operator, given > 0 there exists 1 > 0

s.t. for ]t’-t < 1’ we have

IIS(t’,0) x0 S(t,0) x011 <
t’ t’r

J IIS(t’,s)ll IIf(s,x(s), u(s))l[ ds <_ M
J
[ [a(s) + b(s)(M1Also

1b(.)e L+, we can find 2 > 0 s.t. for It’-t] < 2’ we have

t’
M J [a(s) + b(s)(M1 + IWl)lds <

(1)

+ Wl)]ds. Since a(.),

(e)

Finally for e > 0 we have

I IlS(t’,s)- s(t,s)ll. IIf(s,x(s), u(s))ll ds
0

_< [t-el I[S(t’,s)- S(t,s)]l. Ils(s,x(s), u(s))]] ds + 2M (a(s) +b(s)(M + IWl))ds
0 t-e1

Let > 0 be such that I 2M(a(s) + b(s) (M1 + IWl))ds < e/6. Also from
t-e

proposition 2.1 of [11], we know that because of the compactness hypothesis on S(t,s) for
t-s > 0 (see hypothesis H(A)), we have that t S(t,s) is continuous in the operator norm,
uniformly for all s s.t. t--s is bounded away from zero. Thus we can find 3 > 0 s.t. for

It’-tl < a we have IIS(t’,s) S(t,s)ll < e/6(llall + Ilbll (M + IWl)) for all s T with

t--s _> 1. So we get

-el IIS(t’,s)- S(t,s)ll. IIf(s,x(s), u(s))ll ds < e/
0
t

IlS(t’,s)- S(t,s)ll. IIf(s,x(s), u(s))ll ds < e/3 (3)
0

From (1), (2) and (3) above, we have that for t’-tl < b min {1’ 2’ 3}’ we have

-x(t)ll < e for all x {Xk}k> 1. Thus the sequence {Xk}k> 1 is equicontinuous.

Next observe that for all k>l and all T
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xk(t S(t,0) x0 / J S(t,s) V(s) ds
0

where V(s) {xe X" [[x[[ _< a(s) + b(s) (M + [W[)}. So V(s) is almost everywhere

bounded, closed and since S(t,s) is compact for t-s > 0, S(t,s) V(s) is almost everywhere

compact and clearly measurable in s. So by RadstrSm’s embedding theorem (see for example

[11]), we get that I S(t,s) V(s) ds Pkc(X), == {xk(t)}k> Pkc(X). So invoking the
0

Arzela-Ascoli theorem, we deduce that {Xk(. )}k>l is relatively compact in C(T,X).

Observe that {Uk}k> c__ S and the latter is w-compact in LI(z) (see proposition

3.1 of [10]), and by the Eberlein-Smulian theorem is sequentially w-compact. So by passing to

a subsequence if necessary, we may assume that xk - x in C(T,X) and

uk u in LI(z). Set vk(t f(t, xk(t), Uk(t)) and r/k(t L(t,xk(t), uk(t)). Note that

Ib L Ibr/(s) ds J(Xk, Uk) e. Applying theorem 2.1 of Balder [2], we get ?e (Y) s.t. ?(t)
0 k 0

dt e and (t) conv w-lY- {k(t)}k>_l a.e.. Also note that Vke SI(.) where K(t)

conv f(t,xk(t), uk(t)). But because of the compactness of {xk(t)}k>_l in X and since

w

{uk(t)}k>_l
_
W and f(t,.,.)is continuous on XxZw into Xw, we deduce that K(t)e

Pwkc(X) a.e. and clearly is measurable. So proposition 3.1 of [10] tells us that SI(.) is

sequentially w-compact in LI(x). Hence we may assume that vk v in LI(x) and

furthermore from theorem 3.1 of [12], we have v(t) conv w-ff {vk(t)}k>_l a.e.. Thus we

have

(v(t), y(t)) e conv w-l] (vk(t), /k(t)) a.e.

(v, r/) S1

conv w-I]- Q(. ,xk(.))

But by hypothesis H(Q), we know that x Q(t,x) is u.s.c.i, from X into X xYw w’

Hence w-Ii- q(t, xk(t)) c__ q(t,x(t)) a.e. == (v,r/) e S((.,x(. ))"
Let R(t) {ue U(t,x(t)): v(t) f(t,x(t), u), L(t,x(t), u) _< r/(t)}. Since (v,)

S((. ,x(. ))’ we see that for all e T0, A(T\T0) 0 (A being the Lebesgue measure on ),

we have R(t) ). Set hl(t,u v(t)- f(t,x(t), u) and h2(t,u (t)- L(t,x(t), u).

Because of hypotheses H(f) (1), (2) and H(L), we deduce that both hl(.,. and h2(.,. are

measurable. On (T\T0) Z set hl(t,u 0 in X and h2(t,u 0 in Y. Also let

p: TZ - TXZ be defined by p(t,u) (t,x(t), u). Clearly this is measurable. So because of

hypothesis H(U), p-l(GrU) e B(T) e(z). But observe that p-l(GrU) {(t,u): u

U(t,x(t))} GrU(.,x(.)) == GrU(.,x(.)) e B(T) B(Z)=: GrRe GrU(.,x(.)) {(t,u) TZ:
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hl(t,u 0, h2(t,u 0} B(T)B(Z). Apply Aumann’s selection theorem to get u: T Z

measurable s.t. u(t) R(t) for all T == u(t) Q(t,x(t)) a.e.

v(t) f(t,x(t), u(t)) a.e. and L(t,x(t), u(t)) < /(t) a.e.. Recall that xk(t S(t,0)x0 + J0
S(t,s) Vk(S ds and xk- x in C(T,X), while J[ S(t,s) Vk(S ds S(t,s)v(s) ds. So in

0 0

the limit as k- x(t) S(t,0) x0 + | S(t,s) f(s,x(s), u(s)) ds, u(t) V(t,x(t)) a.e.i.e. (x,u) is
J0

b rb
admissible "state control" pair and J(x,u) | L(t,x(t), u(t)) dt _< | r/(t) dt _< ean

0 J0

J(x,u) e.

Q.E.D.

REMARKS: (1) Our results extends the finite dimensional work of

Cesari-Suryanarayana [3] (theorem 4.1), as well as the infinite dimensional ones by the same

authors [6] (theorem 1) and [7] (theorem 8.1), where Z was reflexive, int Z+ # q) and the

overall hypotheses on the data were more restrictive.

(2) If f(t,x,.) is linear (i.e. f(t,x)u), u L(t,x,u) is Y+-convex (i.e. L(t,x, ,u q-

(1-A)u2) _< A L(t,x,ul) + (l-A) L(t,x,u2) A [0,1], Ul, u2 e Z) and (x,u) L(t,x,u) is

scalarly sequentially 1.s.c. on XxZw (i.e. for every y e Y+ (x,u) (y L(t,x,u)) is

sequentially 1.s.c. on XxZw into IR), then we claim that H(Q) is satisfied. It is easy to see

that because of the above hypotheses Q(t,x) is closed, convex for all (t,x) TX. Also if

xn x in X and (v,r/) w-Ii Q(t, Xn) then by definition we can find (Vk, r/k Q(t, xnk
s.t. (Vk, r/k

w*w (v,r/). We have

vk f(t,xk,Uk), uk U(t,xk) c_. W and L(t, Xk, Uk) _< r/k k_>l.

By passing to a subsequence if necessary, we may assume that uk u. Then u

w-Ii U(t,xk) c__ V(t,x), f(t, xk, Uk) f(t,x,u) == v f(t,x,u) and for all y eY+
(y L(t,x,u)) _< lira (y L(t,xk, Uk) _< (y r/) L(t,x,u) _< r/== (v,r/) e Q(t,x) Q(t,. is

u.s.c.i..

4. AN EXAMPLE
Let T [0,b] and V a bounded domain in n with smooth boundary 0V F. On

TV we consider the following nonlinear parabolic optimal control problem with vector valued

cost functional.
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L(t,v,x(t,v), u(t,v)) dvdt inf(x’u) Io Iv
/s.t. O t’v) --Ax(t,v) f(t,v,x(t,v)) u(t,v)

| x(t, v 0 on Wr
x0/ x(0,v) (v) on {0} xV

_
Ilu(t,.)ll 2 s r _.3

L (V)

We will need the following hypotheses on the data of (**).
H_’: f: TxVx - is a map s.t.

(1) (t,v) f(t,v,x) is measurable

(2) x f(t,v,x) is continuous,

(3) If(t,v,x)l <_ a(t,v) a.e., with a(t,.) L(R)(V), - Ila(t,’)ll
L(R)(V)

LI(T).
H_.(" L: TxV.RxIR m is a function s.t.

(1) (t,v) L(t,v,x,u) is measurable

(2) for each k>_l (x,u) - Lk(t,v,x,u is 1.s.c. and convex in u, where

L mL=( k)k=l,

belonging in

(3) k(t,v) 5 Lk(t,v,x,u 5 lk(t,v) + 2k(t,v)(Ix[ 2 + [u[2), where 1k(.,.
LI(TxV), 2k(t,.)e L(R)(V) and 1l2k(t,.)llL(R)(V) L+.

H0: x0(.)e L2(V).
Let X L2(V), Z L2(V) and Y Rm. Define : T X X to be the Nemitsky

operator corresponding to f(t,v,x) i.e. (t,x) (.) f(t,. ,x(.)). Then

[(t,x) u](v) f(t,v,x(v)) u(v). First let us check that indeed (t,x) u(.)e X L2(V). We

have

I(t,x) u(v)l 2 dv f ]f(t,v,x(v))l 2 lu(v)l 2 dv
V V

V a(t’v)2 ]u(v)]2 dv _< Ila(t,.)ll2L(R)(V). Ilull2L2(V
IIf(t,x)ll < (R).

L2(V)
Next let h L2(V).- We have

(t,x)u) h(v)f(t,v,x(v)) u(v) dv(h,
JV

Fubini’s theorem we know that t | h(v) f(t,v,x(v)) u(v) (h, f(t,x) u) isFrom
JV

measurable =:, (t,x) u is weakly measurable and since L2(V) is separable, by Pettis’

theorem t (t,x)u is strongly measurable. So (t,x)u satisfies hypothesis H(f).
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Next let A A with D(A) H(V) n H2(V). It is well known (see for example

Barbu [3]) that A generates a semigroup of contractions S(t)" L2(V) L2(V) which are

compact for > 0. So we have satisfied hypothesis H(A).
Let L: WxXxY -m be defined by L(t,x,u)-- L(t,v,x(v), u(v)) dv. Then

V

(Lk)k=lAm and for each k (1, m} k(t,x,u) V Lk(t’v’x(v)’ u(v)) dt. Let L:
TVx - be Caratheodory integrands s.t. Ck(t,v) _< L(t,v,x,u) _< m and Lmk T Lk as

m-o for each k e(1, m}. This is possible since Lk(.,. ,.) is a normal integrand (see for

I L(t,v,x(v), u(v)) dv. From Fubini’sexample lemma 2 in Balder [1]). Set (t,x,u)
V

theorem t (t,x,u) is measurable, while (x,u) (t,x,u) is clearly continuous. So

(t,x,u) Am ^mL k (t,x,u) is measurable and since by the monotone convergence theorem L k k’
we conclude Lk(. ,. ,.) is measurable. So we have satisfied hypothesis H(L). In fact L(t,x,.)

is ---convex (see hypothesis H(L)’(2)) and from theorem 5 of Balder [1], (see also

Ekeland-Temam [8]), we get that L(t,.,.) is scalarly 1.s.c. on L2(V) L2(V)w. So H(Q)is

satisfied (see remark (2) in section 3).
_< r}. Then we have satisfied H(U). AlsoLet U(t,x) W (u e L2(V): IlUlIL2(V

assume that:
’- There exists (x(.,.), u(.,.)) admissible pair for (**) s.t. J(x,u) < oo.Ha

This assumption implies that Ha is satisfied. Finally note that because of H(L)’(3),

Hb is satisfied too. Rewrite (**) in the following abstract form:

jb L(t,x(t), u(t)) dt- inf

f s.t. i(t) Ax(t) + (t,x(t))u(t)
x(0) x 0

u(t) W a.e.

This is a special case of the optimal control problem studied in section 3. So we can

invoke theorem and get the following existence result.

THEOREM 2: If hypotheses n(f)’, H(L)’, H0 and H hold

the.___an Eff(A(x0) # q) and the Pareto efficient points of (**) are realized

by admissible "state-control" pairs of (**).
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