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ABSTRACT: We show that the structure of continuous and discontinuous homomorphisms from

the Banach algebra Cn[0,1] of n times continuously differentiable functions on the unit interval

[0,1] into finite dimensional Banach algebras is completely determined by higher point

derivations.
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O. Introduction.

It is well known that the Banach algebra Cn[0,1] is generated by z(t)=t, 0<t<l. Thus a

continuous homomorphism v of Cn[0,1] into a Banach algebra is completely determined by

v(z). We are mainly interested in the structure of discontinuous homomorphisms v from cn[0,1]
into finite dimensional Banach algebras. In 1980 Bade, Curtis and Laursen [1] showed that these

homomorphisms have a striking degree of continuity: the restriction of v to c2n[0,1] is continuous

with respect to the C2n-norm. So, if we can obtain an explicit structure of continuous

homomorphism v from cn[0,1] into finite dimensional Banach algebras we may understand the

behavior of discontinuous ones; that will be our approach to this problem.

1. Preliminaries.

Let Cn[O,1] denote the algebra of all complex valued functions on [0,1] which have n

continuous derivatives. It is well known that Cn[0,1] is a Banach algebra under the norm

[[f[[ =t a[Ol] k__O-’T-"
whose structure space is [0,1]. We will need a characterization of the square of the closed primary

ideals with finite codimension in Cn[0,1]. We use the notation

Mn,k(t0) {f e Cn[0,1]l f0)(to)= O; j 0,1,...,k}.
These are precisely the closed ideals of finite codimension contained in the maximal ideal Mn,k(t0)
of functions vanishing at 0. Writing Mn,k for Mn,k(0 and setting z(t) t, O<_t<l, we have:
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1.1 THEOREM. Let n be a positive integer. Then

2(i) Mn,0 zMn,0 {fifO) ft(O) 0 and/n+l)(o) exists},

(ii) M2
n,k

(iii) M2,n
Part (i)is from [2, Example 3]. Part (ii)is due to Dales and McClure [3,Theorem 3.1]. The

proof of part (iii) can be found in [4].

The squares of the closed primary ideals Mn,k(t) at other points t in [0,1] are given

exaztly by similar formulas, where z is replaced by z-t. We also need the following concepts and

facts in automatic continuity theory.

zk+lMn,k l<k<n-1,

znMn,n

1.2 DEFINITION. If T: A * is a linear map and A, * are Banach spaces, then the

separating space of T, :f(T) is defined by
(T) {y e *1 3{zn} c at, zn 0, and T(n) Y}.

This space measures the discontinuity of T because :f(T) {0} if and only if T is discontinuous, by

the closed graph theorem. More detailed discussion on :f(T} can be found in [5].

1.3 DEFINITION. If at, * are Banach algebras, and T: at * is a homomorphism with

separating space :f(T), then the continuity ideal of T, S(T) is defined by

3(T) {z atl T(z)’(T) (0)}.
Let be a Banach algebra and ,: cn[0,1] * be a homomorphism. It is shown in [6,7] that the

continuity ideal l(u) has finite hull and contains the ideal J(F) of all functions vanishing in

neighborhoods of F hull(:l(u)). F is called the singularity set of .
1.4 THEOREM. Let n be a positive integer and ,: cn[0,1] * be a discontinuous

homomorphism with singularity set F {0}. Consider the following statements:

(a) :f(u) is finite dimensional,
(b) J(u) has finte codimension,

(c) (u) is closed and contains Mn,n_l,
(d) (u)2 {0},
(e) zn e (,,),

2 znMn,n for the graph norm Iliflll(f) u is continuous on Mn,n=
(g) u is C2n-continuous (i.e. the restriction of u to G"dn is continuous with respect

to the c2n-norm).
We have the following implications:

(a) =# (b) . (c) , (d) , (e) . (f) (g).

For the proof see [1].

2. Algebraic results.

Let u be a homomorphism of Cn[0,1] into a finite dimensional Banach algebra . We may

assume that u is onto by considering u: cn[0,1] u(cn[o,1]). We shall reduce the study of u to

the case where the range space is a finite dimensional local algebra.
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Let be the range of v. Since is a finite dimensional commutative algebra with a unit e,
the Wedderburn principal theorem states that . + , where is the radical of . Now is

a semisimple commutative algebra with unit. By the Wedderburn structure theorem for finite

dimensional algebras we can write

.A el. emit
where

e. e.= 0,

ei2 e 1,2,..., m,

e e + +

and ei. is a simple commutative algebra with unit e so that ei.x C. Thus we can write

B exB B B emB,
where each ei is a local algebra which may be isomorphic to C. Moreover v exv + + emv

.C then e.v is just a multiplicativeand each etv is a homomorphism of Cn[0,1] onto ei. If ei
hnear functional and is of the form eivOq flt0)e for some to in [0,1]. It remains to consider the

case when ei is a local algebra which is not isomorphic to C. Our next objective is to characterize

the kernel of v.

2.1 LEMMA. Let v be a homomorphism of Cn[0,1] onto a finite dimensional algebra. If

hull(ker v) then

(i) (z t0)m ker v for some positive integer m,
(ii) The ideal J(t0) of all functions vanishing in neighborhoods of to is contained in kerv.

PROOF: (i) Suppose that v(z-to) is not nilpotent. Then v(z-to) is invertible so that there

exists g in Cn[0,1] such that v(z-t)v(g) v(1). Thus (z- t0)g I + ffor some fin kerr. But
(z- to)g Mn,0(t) and f kerr c Ma,0(t) so that 1 M0(t This is a contradiction.

(ii) Let f J(to). Choose g J(to) such that g is identically one on the support of f. We claim that

v(/) is nilpotent. Suppose not, then v(g) is invertible and e v(h) for some h e J(t0). So 1 h + v

for some v kerr. This is a contradiction since h e J(t) c Mn,0(t0) and v

Thus gm kerv for some m and we have f fgm ker v.

Immediately following this lemma we have:

2.2 COROLLARY. Let v be a homomorphism of C[0,1] onto a finite dimensional local

algebra. The hull of kerr consists of exactly one point to and therefore the singularity set F
hull( ()) c_

PROOF: Let to and t be in hull(kerr). By 2.1 there exist positive integers m0 and mt such
that v(z- t0)m O and v(z- t)m O. Then v[(z- to) (z- t)]m +m O
so that t-t=0. Thus hull(ker,) to for some to in [0,1]. Since kerr c_ l(v) it follows that

hu(()) c_

Without loss of generality we shall take hull(kerr) to be {0}. With this assumption we now

describe v for the case when it is continuous.
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2.3 THEOREM. Let be a continuous homomorphism of ca[0,1] onto a finite dimensional

local algebra with hull (ker) {0}. There exists a positive integer k < n-/- 1 such that
k-1

_10(o) i= ]
where 5i (])-

PROOF: Since t, is continuous, ker is a closed primary ideal of finite codimension. Thus
k-1

keru Mn,k_ 1 for some k<_n+l. Let f cn[0,1] we write f= .- $i(])z’+Rf, where Rf

Mn,k 1
kert,. Then

k-1
Oq iO5-(.)

i=O
The sequence of linear functionals 1""’ $k-1 is called a continuous higher point

derivation of order k- 1 on ca[0,1] at 50. We refer to [3] for a complete description of the order

and continuity properties of higher point derivations on cn[0,1].

3. The structure of discontinuous homomorphisms of Cn[0,1] onto finite dimensional

local algebras.

We now turn our attention to discontinuous homomorphisms of cn[0,1] onto a finite

dimensional local algebra * with hull(kerr) {0}. First we characterize kerv.

3.1 LEMMA. ker

PROOF: Let f ker, there exists {fro} c ker with .fro =:’ f. Then f-fro = 0 and t,(.f-fm
=:, t,(]) so that t,0 :f(). Hence kerr,

Now let f ’l(y()). By definition of (), there exists tfk}. Since has finite codimension in ca[0,1], there exists a subspace V with dimV < oo such

that ca[0,1] V. So we can write fk gk + vk where gk icer and vk V. But "fk =:’ 0

so that gk 0 and vk = O. Since dimV < o, ,(Vk) 0 so that r,(gk) ,k ,(vk) =:, ,(1).
Again we can write kerr, W, where dimW < oo, so gk hk + Wk where hk ker and

wk W. Then t,(gk) r,(Wk) r,Oq so that Oq (W). Thus fW +ker k--- and we conclude

that ,-l(:f(t,)) c_ ker.

3.2 LEMMA. Let k be the integer for which t, Mn,k_ 1 k_< n + 1 Then M2n,k_ c_
ker t, and

* span{ e, r,(z), r,(z)k- 1} Y(v).

PROOF: The first statement is clear since kerr is a closed primary ideal of finite

codimension. By 3.1 t,(Mn,k_l) :f(v). Let f, g Mn,k_l, then v(.fg)=v(])v(g) :f(v)2 {/7}

by 1.4. Since

o[0,1] p{, , :- } k
we have

(cn[0,1]) span{e,t,(z), t,(z)k- 1} +

by 3.1. To see that the sum is direct let

b hoe + th t,(z) + + a,.r,(z)k- 1 y(t,)

and suppose b # 0. Let j be the smallest integer such that a 0, then
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t-- 3

k--I
..a,u(z)t-j- is invertible since ai 0, so u(z)

;
b’(u). By 3.1 keru Mn,k_ 1"But

$--3

is a contradiction since j < k I.

We are now in position to describe discontinuous homomorphisms.

This

3.3 THEOREM. Let v be a discontinuous homomorphism of Cn[0,1] onto a finite dimensional

local algebra with hull(kerr) (0} and "u Mn,k_ 1" There exist bl, b, in Y(u) and

discontinuous linear functionals 71, "r,, on cn[0,1] which vanish on polynomials and on the

principal ideal zkCn[O,1] such that

a(z) + ,(z ])(z) b, +...+ (zi (z)
l=O l=O l=O

where d d, + ’1 is a higher point derivation at 0 and the linear functionals 0 defined by

7i(z J), j 1,..., m, are discontinuous point derivations at 0.

PROOF: Since zk E Mn,k_ 1 t’-l(b’(u)) and :f(v)2 {0}, the multiplication
operator u(z)" :f(,) y(t,) is nilpotent of index less than or equal to k. So we may choose a basis B
for f(u) of the form

B {(z), (z)+ b, (z)b,..., (z)/bl., (z)/bin, v(z) bm b
where 0 _< ,/t ,...,/ _< k- 1. Let f E cn[0,1]. Consider the Taylor expansion

k-1

i=O

where Rf Mn, k- 1 ker. Since .(R]) :t(.) we can write_
+t,

l=O l=k l=O

+ r,
l=O

We make the following observations:

(i) The coeffident functionals d,,..., d,+,l, "t1,1,..., 3’,i1+,..., "t,,,z,..., "t,,,,,+, are

discontinuous. To see this, consider 1,1. Since bl ’(,,), there exist fi =} 0 in Gn[0,1] with v(fi)
=:, bx. We have

l=O l=k

+

_
.r,,,+l(.fi)v(z),b, + , .r,,,+,Oti)t,(z)’b, +...+

I=I 1=0
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Since u(fr)- bl = 0 we must have all coefficients tending to zero as j.-.oo, in particular

.lira ,, ,(1")= 1, which implies that "r, is discontinuous. The same argument works for the other

coefficient functionals d,...,

M2(ii) Since zk Mn, k- 1 n, k- 1 c_ ker u (by 3.2) all the above functionals vanish on zk Mn, k- 1"

For a notational purpose we set d, =, for 1= 0, 1,..., k-1. Let f, g E Cn[0,1]. Using the fact

that u(z)k+ k + 1= 0 and :(u)2 {0} (by 1.4), we have

0(g) d0 d, (g (z)
I=0

+ d("r,, + (g) + "r, + 05 d(g b, +

Since u(])v(9) u(fg) we have

(iii) d,(fg) d09 d,_ r(9) for 0 < _< k +k + 1, so d d + is a higher point derivation at
j=O

O.

(iv) For j= 1,..., m and I= 1,..., we have -r,,+,(zi) O, i=O, 1, 2, Because 7,,+,(zi)
0, for i= 0, 1, k+ since dr(z/) 0 if i#j, d(zi) I if i=j, and span{e, (z),..., ,(z)k- 1}
spanB . 7r,,+,(zi) 0, for >_ k+k + 1 since ,.,(z)k+r’- + 1__ O.

Combining (ii) and (iv) we see that all the "r,+, vanish on zkCn[0,1].
(v) For j= 1,..., m and 1= 1,..., i we have

,,.(fg) ,(.h’r,,.-,() + -r,,.-.(.h.()
8=0

so that

7,,r.,(zi- If) 7r,,+,(J), f E Cn[0,1], j= 1,..., m

We take 3’ "r,,+,, j= 1,.., m. Letting 1=0 in (v), we note that the linear functionals 0r,

(j= 1,..., m), defined by 0(]) 7,(J) 7(z ]) are discontinuous point derivations at 0.
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