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ABSTRACT. This paper considers a new class of multifunctions, the irresolute multi-
functions. For the irresolute multifunctions we give some theorems of characterizations.
Some relations between continuous multifunctions and irresolute multifunctions are

established.
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1. INTRODUCTION.

In [1] Levine defines a set A in a topological space X to be semi-open if there
exists an open set U c X such that U ¢ A c C1 U, where Cl U denotes the closure of U.

The family of all semi-open sets in X is denoted by SO(X). A set is semi-closed
if its complement is semi-open. The intersection of all the semi-closed sets contain-
ing a set A is the semi-closure of A denoted by Scl A. Also, Scl(A)= Scl(Scl A), A c B
implies Scl A ¢ Scl B, A c Scl A c Cl1 A and that A is semi-closed iff A=Scl A (2], (3].

The notion of irresolute functions was introduced by Crossley and Hildebrand in
[4] in this way:

DEFINITION 1. Let X and Y be two topological spaces. A function f:X»Y is irreso-
lute if for each V € SO(Y), £ 1(V)e SO(X).

The notion of upper (lower) irresolute multifunctions was introduced by Ewert and
Lipski in [5].

DEFINITION 2. Let X and Y be two topological spaces.
(a) A multifunction F:X»Y is upper irresolute (u.i.) at a point x €X if for any semi-
open set W c Y such that F(x) c W, there exists a semi-open set U c X containing x
such that F(U) c W.
(b) A multifunction F:X»Y is lower irresolute (1l.i.) at a point x €X if or any semi-
open set W ¢ Y such that F(x) N W # ¢ there is a semi-open set U © X containing x
such that F(y) n # ¢, yy e U.
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(c) A multifunction F:X»Y is upper (lower) irresolute if it has this property in any
point x¢ X [5].

Some properties of the lower (upper) irresolute multifunctions are studied in [5].

The notion of quasicontinuous multifunctions was introduced and studied by Banzaru
and Crivat in [6].

DEFINITION 3. Let X and Y be two topological spaces. A multifunction F:X»Y is
quasicontinuous at a point x € X if for any neighborhood U of x and for any open sets

Gy» G, © Y such that F(x) € G, and F(x) n G, #* ¢ there exists a non-empty open set

2 1

Gy © U such that F(G;) < G, and F(y) N G, * ¢, Vye€ Gy.

The multifunction F:X»Y is quasicontinuous if it has this property at any point
xeX [6].

Some properties of quasicontinuous multifunctions are studied in [7], [6] and (8].

DEFINITION 4. Let X and Y two topological spaces. A multifunction F:X-»Y is

irresolute at a point xeX if for any semi-open sets Gl’ G2 c Y such that F(x) c G1 and

F(x) c G2 # ¢ there exists a semi-open set U c X containing x such that F(U) c G, and
F(y) n G2 * ¢,VyeU.
The multifunction F:X»Y is irresolute if it has this property at any point x € X.
REMARK 1. If F:X»Y is irresolute then F is upper and lower irresolute.
REMARK 2. By Theorem 1.1 [8] it follows that if F:¥%Y is irresolute then F is quasi-

continuous.

2. CHARACTERIZATIONS.

Let X,Y be two topological spaces and let S(y) and K(y) be classes of all non-empty
and non-empty compact subsets of Y, respectively. For amultifunction F:X»Y we will
denote

FY(B) ={xe X:F(x) c B}; F (B)= {xe X:F(x) n B # ¢}

for any subset B c Y.
DEFINITION 6. Let A be a set of a topological space X.U is a semi-neighbourhood
which intersects A if there exists a semi-open set V ¢ X such that Vc Uand VN A = ¢.
THEOREM 1. For a multifunction F:X»Y the following are equivalent:
1. F is irresolute at xe¢ X.

2. For any semi-open sets G,, G, < Y with F(x) c G, and F(x) n G, # ¢, there

results the relation

x€Cl {Int [F'(G)) n F (6]}
3. For every semi-open set. G» 6, ¥ with F(x) c G, and F(x) n G, = ¢ and for

any open set U ¢ X containing x, there exists a non-empty open set Gu c U such that

F(GU) € G, and F(y) n G, * ¢, vV ¥ €Gy.

1’ G2 € S0(Y) with F(x) c G1
there is U € SO(X) containing x such that F(U) c G1 and F(y) n G2 % ¢, V yeU, thus

PROOF. (1) =>(2). Let G and F(x) n G2 # ¢. Then
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x € Uc F+(Gl) and x€ U ¢ F—(Gz). Then xe U c F+(Gl) n F-(Gz). Since U is a semi-open
set in X, then by Theorem 1 [1] x€U c C1 [Int U] c Cl{Int [F+(G1) nF (6,1}

(2) => (3). Let G,, G, e SO(Y) be with F(x) c G

1 S and F(x) N G, = 0. Then

1 2

X € Cl{Int[F+ (Gl) n F-(Gz)]}. Let U c X be any open set such that x e U. Then
U n [Int F+(G1) N F7(6,)] # 0. Since Int[F+(G1) N F(G,)] ¢ Int F+(Gl) N Int F(G,)
then U n [Int F+(Gl) N Int ¥7(G,)] # 0. Put G = [Int F+(Gl) N Int F7(G,)] 0 U, then

+ + - -
GU # 0, GU c v, GU c Int F (Gl) cF (Gl) and GU c Int F ((,2) cF (Gz) and thus

F(GU) c G, and F(y) n GZ #0,yyeG..

1 U

(3) => (1) Let Ux be the system of the open sets from X containing x. For any
open set U ¢ X such that x € U and for every semi-open set G].,G2 c Y with F(x) c G1
and F(x) n G, # 0, there exists a non-empty open set GU c U such that F(GU) <6y and

F(y) n G2 #0,VyeG.. Let W= U G, then W is open, xecl W, F(W) c Gl and

U Ueu U
X
F(z) n 62 #0, VzeW. Put S=WU {x}, then Wc S c C1 W, thus W is a semi-open set
in X, x€ 8, F(S) c G, and F(t) n G2 # 0,VteS, thus F is irresolute at x.

THEOREM 2. For a multifunction F:X»Y the following are equivalent:
1. F is irresolute.
2. For every semi-open set Gl’ G2 cy, F+(Gl) n F_(Gz) € SO(X).

3. For every semi-closed set Vl’ V2 cy, F-(Vl) U F+(V2) is a semi-closed set in X.

4. For every set Bl’ B2 c Y, there results the relation

Int{CL[F (B,) U F'(B,)]} € F (Scl B)) U F'(Scl B,).
5. For every sets Bl’ B2 c Y, there results the relation
Sc1[F (B;) U F'(B,)] c F (Scl B)) U F'(Scl B,).
6. For every set Bl’ B2 c Y, there results the relation
SInt[F (B) n F'(B,)] > F (sInt B)) n F'(sInt B,).
7. For each point x of X and for each semi-neighbourhood Vl of F(x) and for each semi-

neighbourhood V2 which intersects F(x), F+(V1) n F-(Vz) is a semi-neighbourhood of x.

8. For each point x of X and for each semi-neighbourhood V1 of F(x) and for each semi-

neighbourhood V2 which intersects F(x), there is a semi-neighbourhood U of x such that

F(U) cV, and F(y) NV, 20, Vye U.

1 2
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PROOF. (1) => (2). Let G, 6
F(x) NG

,€S0(Y) and xe F'(G) n F(G,), thus F(x) < G, and
2 # 0, then F being irresolute according to the Theorem 1, implication

(1) => (2) there follows that x eCl{Int[F+(Gl) n F-(GZ)]} and as x is choosen arbitrarily
in F+(G1) n F'(Gz), there follows that F+(Gl) n F'(cz) c Cl{Int[F+(Gl) n F'(cz)]} and
thus F+(Gl) n F-(Gz) is a semi-open set by Theorem 1 of [6].

(2) => (3). For if V c Y, then F (Y-V)=X-F'(V) and F(Y-V) = X-F (V).
(3) => (4). Suppose that (3) holds and let B;, B, two arbitrary subsets of Y, then

Scl Bl and Scl B2 are semi-closed sets in Y. Then F (Scl Bl) U F+(Scl BZ) is a semi-
closed set of X. By Theorem 1 of [3]

Int{CL [F (Scl B)) U F' (sc1 B,)1}c F (Scl B)) v Fr(scl B,).

Since we have Ac Scl A then F+(A) c F+(Sc1 A) and F (A) < F (A) € F (Scl A).

Consequently,

Int{Cl [F(B,) U F'(B,)]} c Int{CL[F (Scl B)) U F'(Scl B,)]} <

< F(Scl B;) U F'(scl B,).

(4) => (5), From Scl A=A U Int C1 A follows Scl[F-(Bl) U F+(B2)] = [F-(Bl) U
F'(8,)] U Int{Cl [F'(B)) U F'(B,)]} © [F(B;) u F'(B,)] U F (Scl B)) U F'(Scl B,) c
F (Scl B)) U F'(Scl B,).

(5) => (6) X- sInt[F (B;) n F+(Bz)] = Scl [X-F (B;) n r*(nz)] =
= Scl [(X-F (B;)) U (X-F'(B,))] = el (F*(¥-B,) F (Y-B,)] < F'(Scl(Y-B,))

U F'(Scl(Y-B,)) = F'(Y-sInt B;) U F (¥-sInt B,) = (X-F'sInt B))) U (X-F'(sInt B,)) =
X- [F (sInt B,) n F'(sInt B,)] and thus sIm:[F'(Bl) n F+(B2)] > F (sInt B,)
n ¥ (sInt BZ)

(6) => (7). Let x€X, V, a semi-neighbourhood of F(x) and V, a semi-neighbourhood
which intersects F(x), then there exists two semi-open sets U, and U, such that U v,
and U, < V,, F(x) € U and F(x) N U, # 0, thus xe r*’(ul) N F(U)). By hypothesis
xe F'(U)) n F(U,) = F'(sInt U)) 0 F (sInt U,) © sInt[F'(u)) n F(U,)] < sInt [F'(V))

N F (V)] € F(v) 0 F'(V,)). From xesInt[F'(U)) F(U,)] c F+(V1) n F7(V,) it follows

that F+(Vl) n F-(Vz) is a semi-neighbourhood of x.

(7) => (8). Let xeX, V, a semi-neighbourhood of F(x) and V, a semi-neighbour-

hood which intersects F(x), then U = F+(V1) n F-(Vz) is a semi-neighbourhood of x,

F(U) <V, and F(y) nv, = 0,vyeU.
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(8) => (1). Evident.
COROLLARY 1. For a single valued mapping f:X»Y the following are equivalent:
1. f is irresolute at x.

2. For each semi-open set G ¢ Y with f(x) € G, there results the relation
x eCl{Int £ 1(G)].

3. For any open set U ¢ X containing x and for any semi-open set G c Y with
f(x) e G, there exists a non-empty open set Gy < U such that f(GU) c G.

COROLLARY 2. For a single valued mapping f:X»Y the following are equivalent:

1. f is irresolute.

2. £1(6)eS0(X), V GeSO(Y). (Definition 1.1 [4]).

3. For each semi-closed set V c Y, f-l(V) is a semi-closed set. (Theorem 1.4, [4]).

4. For each subset B ¢ Y, Int[Cl fY-](B)] c f-l(Scl B).

5. For each subset B c Y, Scl f_l(B) c f_l(Scl B). Theorem 1.6, [4])

6. For each subset B c Y, sInt f_l(B) 571 (sInt B).

7. For each point x of X and for each semi-neighbourhood V of f(x),
f_l(V) is a semi-neighbourhood of x.

8. For each point x of X and for each semi-neighbourhood V of f(x) there is a
semi-neighbourhood U of x such that f(U) c V.

3. CONTINUOUS MULTIFUNCTIONS AND IRRESOLUTE MULTIFUNCTIONS.

The notion of strongly continuous multifunctions was introduced in [9] as a generali-
zation of the univocal strongly continuous mapping defined by Levine in [10].

DEFINITION 7. The multifunction F:X»Y is strongly lower semi-continuous (s.l.s.c.)
if for each subset B c Y, F (B) is a open set in X [9].

DEFINITION 8. The multifunction F:X»Y is strongly upper semi-continuous (s.u.s.c)
if for each subset B c Y, F+(B) is an open set in X.

THEOREM 3. If F:X»Y is a multifunction so that:

1. F is upper irresolute.

2. F is strongly lower semi-continuous, then F is irresolute.
PROOF. Let Gy» Gy€ SO(Y). Let xe¢ F+(G1). F being upper irresolute then
there is a semi-open set U containing x and F(U) < Gl' Since U is semi-open in X, then
by Theorem 1 of [6], x€U c C1{Int U] c C1[Int F+(Gl)]' As x is chosen arbitrarily in
F+(Gl) there follows that F+(G1) c C1{Int F+(Gl)] and éhus F+(G1) is a semi-open set in

X by Theorem 1 of [1]. F being s.l.s.c. then F-(Gz) is an open set in X. Then

F+(G1) n F-(Gz)e SO(X) and by Theorem 2, implication (2) => (1). F is irresolute.
DEFINITION 9. A multifunction F:X»Y is said to be injective if for Xis X€ X, X z X,

we have F(Xl) n F(xz) = 0.
A multifunction F:X+Y is said to be pre-semi-open if for any semi-open set A c X the

set F(A) is semi-open.
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DEFINITION 10. A set A is called regular open if A=Int[Cl A].

THEOREM 5. Let Y be a regular space and F:X»Y S(Y) be a pre-semi-open and irresolute
multifunction. If one of the conditions holds:

1. Int F(X) = 0 for every xe¢ X.

2. F is injective,
Then F is lower semi-continuous.

PROOF. In a topological space (Y,T) the intersections of two regular open sets

forms a base for a topology TS on Y, called the semi-regularization of T. If the Y is

a regular space then T=TS. The proof follows then by Remark 1 and by Theorems 7 and
10 from [5].

THEOREM 6. Let Y be a regular space or a space which has a basis composed of open-
closed sets. If F:X»K(Y) is a pre-semi-open, irresolute and injective multifunction,
then F is continuous.

PROOF. Follows from Remark 1, Theorems 7 and 11 of [5] and Remark 8 from [5].
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