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ABSTRACT. This paper considers a new class of multifunctions, the irresolute multi-

unctions. For the irresolute multlfunctions we give some theorems of characterizations.

Some relations between continuous multifunctions and irresolute multifunctions are

established.
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I. INTRODUCTION.

In [I] Levine defines a set A in a topological space X to be semi-open if there

exists an open set U c X such that U c A c Cl U, where C1 U denotes the closure of U.

The family of all semi-open sets in X is denoted by SO(X). A set is semi-closed

if its complement is semi-open. The intersection of all the semi-closed sets contain-

ing a set A is the semi-closure of A denoted by Scl A. Also, ScI(A)= Scl(Scl A), A c B

implies Scl A c Scl B, A c Scl A c C1 A and that A is semi-closed iff A=Scl A [2], [3].

The notion of irresolute functions was introduced by Crossley and Hildebrand in

[4] in this way:

DEFINITION I. Let X and Y be two topological spaces. A function f:XY is irreso-

lute if for each V SO(Y), f-l(v) SO(X).

The notion of upper (lower) irresolute multifunctions was introduced by Ewert and

Lipski in [5].

DEFINITION 2. Let X and Y be two topological spaces.

(a) A multifunction F:XY is upper irresolute (u.i.) at a point x 6 X if for any semi-

open set W c y such that F(x) c W, there exists a semi-open set U c X containing x

such that F(U) c W.

(b) A multifunction F:XY is lower irresolute (l.i.) at a point x X if or any semi-

open set W c y such that F(x) 0 W there is a semi-open set U c X containing x

such that F(y) 0 , V Y U.
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(c) A multifunction F:XY is upper (lower) irresolute if it has this property in any

point xX [5].

Some properties of the lower (upper) irresolute multifunctions are studied in [5].

The notion of quasicontinuous multifunctions was introduced and studied by Banzaru

and Crivat in [6].

DEFINITION 3. Let X and Y be two topological spaces. A multifunction F:XY is

quasicontinuous at a point x X if for any neighborhood U of x and for any open sets

GI, G
2

c y such that F(x) c G
1
and F(x) G

2
# @ there exists a non-empty open set

GU
c U such that F(GU) c G

1
and F(y) G

2
# #, VYe GU-

The multifunction F:XY is quasicontinuous if it has this property at any point

x X [6].

Some properties of quasicontinuous multifunctions are studied in [7], [6] and [8].

DEFINITION 4. Let X and Y two topological spaces. A multifunction F:XY is

irresolute at a point xeX if for any semi-open sets GI, G
2

c y such that F(x) c G
1
and

F(x) c G
2 there exists a semi-open set U c X containing x such that F(U) c G1

and

F(y) G
2 ,Vye U.

The multifunction F:Y is irresolute if it has this property at any point x X.

REMARK I. If F:Y is irresolute then F is upper and lower irresolute.

REMARK 2. By Theorem I.I [8] it follows that if F:XY is irresolute then F is quasi-

continuous.

2. CHARACTERIZATIONS.

Let X,Y be two topological spaces and let S(y) and K(y) be classes of all non-empty

and non-empty compact subsets of Y, respectively. For a multifunction F:XY we will

denote

F+(B) ={xeX:F(x) c B}; F-(B)= {xe X:F(x) B @}

for any subset B c y.

DEFINITION 6. Let A be a set of a topological space X.U is a semi-neighbourhood

which intersects A if there exists a semi-open set V c X such that V c U and V A # @.

THEOREM I. For a multifunction F:XY the following are equivalent:

I. F is irresolute at x X.

2. For any semi-open sets GI, G
2

c y with F(x) c G
1 and F(x) G

2
# @, there

results the relation

x CI {Int [F+(GI F-(G2)] }.

3. For every semi-open set. GI, G
2

y with F(x) c G
1
and F(x) N G

2
and for

any open set U c X containing x, there exists a non-empty open set G c U such that
u

F(Gu) c G
1
and F(y) G

2
, V YeGU.

PROOF. (I) => (2). Let GI, G
2

e SO(Y) with F(x) c S
1
and F(x) N G

2
# @. Then

there is U eSO(X) containing x such that F(U) c G
1
and F(y) G

2
# @, V Ye U, thus
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F+(GI -(G
2 F+(GI F-(G2)x U c and x U c F ). Then x U Since U is a semi-open

set in X, then by Theorem [i] x6 U c C1 [Int U] c Cl{Int [F+(GI N F-(G2)] }.

(2) => (3). Let GI, G
2

e SO(Y) be with F(x) G and F(x) N G
2

0. Then

x Cl{Int[F+ (GI) 0 F-(G2)] }. Let U X be any open set such that x eU. Then

U [Int F+(GI F-(G2)] 0. Since Int[F+(Gl F-(G2) c Int F+(GI Int F-(G2)
then U 0 [Int F+(GI 0 Int F-(G2)] 0. Put GU [Int F+(GI Int F-(G2)] U, then

Gu 0, GU
c U, Gu Int F+(GI c F+(GI and GU

c Int F-(G2) c F-(G2) and thus

F(Gu) c G
1
and F(y) G

2 0,V y eGU.

(3) => (i). Let U be the system of the open sets from X containing x. For any
X

open set U c X such that x eU and for every semi-open set GI,G2 y with F(x) G

and F(x) G
2 0, there exists a non-empty open set GU U such that F(GU) G and

F(y) G
2 0, Vy GU. Let W U GU, then W is open, xcl W, F(W) c G and

UeU
x

F(z) 0 G
2 0, V z W. Put S W U {x}, then W S C1 W, thus W is a semi-open set

in X, x6 S, F(S) c G
1
and F(t) 0 G

2 0,V t S, thus F is irresolute at x.

THEOREM 2. For a multifunction F:XY the following are equivalent:

I. F is irresolute.

F+(GI2. For every semi-open set GI, G
2

c y, F (G2) e SO(X).

F+(v23. For every semi-closed set VI, V
2

y, F (VI) U is a semi-closed set in X.

4. For every set BI, B2
y, there results the relation

Int{CI[F-(BI) U F+(B2)]} F-(Scl BI) U F+(Scl B2).
5. For every sets BI, B

2
c y, there results the relation

ScI[F-(BI) U F+(B2 )] F-(Scl BI) U F+(Scl B2).
6. For every set BI, B

2
y, there results the relation

slnt[F-(BI) N F+(B2 )] F-(slnt BI) 0 F+(slnt B2).
7. For each point x of X and for each semi-neighbourhood V of F(x) and for each semi-

F+(Vlneighbourhood V
2 which intersects F(x), F (V2) is a semi-neighbourhood of x.

8. For each point x of X and for each semi-neighbourhood V
I of F(x) and for each semi-

neighbourhood V
2
which intersects F(x), there is a semi-neighbourhood U of x such that

F(U) V
1
and F(y) V

2 0, V y U.
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PROOF. (I) ffi> (2). Let GI, G
2

SO(Y) and x F+(GI 0 F-(G2), thus F(x) c GI and

F(x) 0 G
2

0, then F being irresolute according to the Theorem I, implication

F+(G1(I) ffi> (2) there follows that x e Cl{Int[ 0 F (G2)] and as x is choosen arbitrarily

in F+(G1 0 F-(G2) there follows that F+(G1 F-(G2) c CI{Int[F+(GI 0 F-(G2)] and

F+(GIthus F (G2) is a semi-open set by Theorem of [6].

(2) => (3). For if V c y, then F-(Y-V)=X-F+(V) and F+(Y-V) X-F-(V).
(3) => (4). Suppose that (3) holds and let BI, B2 two arbitrary subsets of Y, then

Scl B
1
and Scl B2 are semi-closed sets in Y. Then F-(Scl BI) U F+(Scl B2) is a semi-

closed set of X. By Theorem 1 of [3]

Int{Cl [F-(Scl B1) U F+ (Scl B2)]}c F-(Scl B1) U F+(Scl

Since we have Ac Scl A then F+(A) c F+(Scl A) and F-(A) c F-(A) c F-(Scl A).

Consequently,

Int{Cl [F-(BI) U F+(B2)]} c Int{Cl[F-(Scl B1) U F+(Scl B2)]} c

c F-(Scl B1) U F+(Scl B2).
(4) => (5). From Scl A=A U Int C1 A follows ScI[F-(BI) U F+(B2 )] [F-(BI) U

F+(B2 )] U Int{Cl [F-(BI) U F+(B2)]} c [F-(BI) U F+(B2 )] U F-(Scl BI) U F+(Scl B2) c

F-(Scl BI) U F+(Scl B2).
(5) => (6) X- sInt[F-(Bl) fi F+(B2 )] =Scl [X-F-(BI) 8 F+(B2 )]

Scl [(X-F-(BI)) U (X-F+(B2))] Scl [F+(Y-B1 U F-(Y-B2) c F+(ScI(Y-BI ))

U F-(ScI(Y-B2)) F+(Y-sInt BI) U F-(Y-sInt B2) (X--sInt B1)) U (X-F+(sInt B2))
X- [F-(sInt BI) 0 F+(sInt B2)] and thus sInt[F-(BI) 0 F+(B2 )] D F-(sInt BI)

F+(sInt B2)
(6) => (7). Let x X, V a seml-neighbourhood of F(x) and V

2
a seml-nelghbourhood

which intersects F(x), then there exists two semi-open sets U
1 and U

2 such that U
1
c V

1

and U
2
c V2, F(x) c U

1 and F(x) 0 U
2

# 0, thus xe F+(UI 0 F-(U2). By hypothesis

x F+(UI 0 F-(U2) F+(sInt UI) 0 F-(sInt U2) c slnt[F+(Ul 0 F-(U2) c sInt [F+(VI
0 F-(V2)] c F+(VI 0 F-(V2). From x e sInt[F+(Ul F-(U2) c F+(VI) 0 F-(V2) it follows

that F+(VI 0 F-(V2) is a seml-neighbourhood of x.

(7) => (8). Let x e X, V
1

a semi-neighbourhood of F(x) and V
2

a seml-nelghbour-

hood which intersects F(x), then U F+(VI 0 F-(V2) is a semi-neiEhbourhood of x,

F(U) c V
1 and F(y) 0V2 0, VyeU.
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(8) => (1).

COROLLARY I.

I.

2.

3.

Evident.

For a single valued mapping f:X/Y the following are equivalent:

f is irresolute at x.

For each semi-open set G c y with f(x) e G, there results the relation

x eCl[Int f-l(G)].

For any open set U c X containing x and for any semi-open set G c y with

f(x) e G, there exists a non-empty open set Gu c U such that f(GU) c G.

COROLLARY 2. For a single valued mapping f:XY the following are equivalent:

I. f is irresolute.

2. f-l(G) e SO(X), GeSO(Y). (Definition I.I [4]).

3. For each semi-closed set V c y, f-l(v) is a semi-closed set. (Theorem 1.4, [4]).

4. For each subset B c y, Int[Cl fY-I(B)] c f-l(scl B).

5. For each subset B c y, Scl f-l(B) c f-l(scl B). Theorem 1.6, [4])

6. For each subset B c y, sInt f-l(B) D f-I (sInt B).

7. For each point x of X and for each semi-neighbourhood V of f(x),

f-l(v) is a semi-neighbourhood of x.

8. For each point x of X and for each semi-neighbourhood V of f(x) there is a

semi-neighbourhood U of x such that f(U) c V.

3. CONTINUOUS MULTIFUNCTIONS AND IRRESOLUTE MULTIFUNCTIONS.

The notion of strongly continuous multifunctions was introduced in [9] as a generali-

zation of the univocal strongly continuous mapping defined by Levlne in [I0].

DEFINITION 7. The multifunction F:XY is strongly lower seml-contlnuous (s.l.s.c.)

if for each subset B c y, F-(B) is a open set in X [9].

DEFINITION 8. The multifunction F:XY is strongly upper semi-continuous (s.u.s.c)

if for each subset B y, F+(B) is an open set in X.

THEOREM 3. If F:X/Y is a multifunction so that:

I. F is upper irresolute.

2. F is strongly lower semi-continuous, then F is irresolute.

PROOF. Let GI, G
2

SO(Y). Let x F+(GI ). F being upper irresolute then

there is a semi-open set U containing x and F(U) c GI. Since U is semi-open in X, then

Theorem of [6], x U c Cl[Int U] c Cl[Int F+(GI)]. As x is chosen arbitrarily inby

F+(GI there follows that F+(GI c Cl[Int F+(GI )] and tus F+(GI is a semi-open set in

X by Theorem 1 of [I]. F being s.l.s.c, then F (G2) is an open set in X. Then

F+(GI N F-(G2) SO(X) and by Theorem 2, implication (2) => (I). F is irresolute.

DEFINITION 9. A multifunction F:XY is said to be injective if for xI, x2 X, xI x2

we have F(XI) N F(x2) 0.

A multifunction F:XY is said to be pre-semi-open if for any semi-open set A c X the

set F(A) is semi-open.
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DEFINITION I0. A set A is called regular open if A=Int[Cl A].

THEOREM 5. Let Y be a regular space and F:XY S(Y) be a pre-seml-open and irresolute

multifunction. If one of the conditions holds:

I. Int F(X) 0 for every xe X.

2. F is injective,

Then F is lower semi-continuous.

PROOF. In a topological space (Y,T) the intersections of two regular open sets

forms a base for a topology TS on Y, called the semi-regularization of T. If the Y is

a regular space then T=TS. The proof follows then by Remark I and by Theorems 7 and

I0 from [5].

THEOREM 6. Let Y be a regular space or a space which has a basis composed of open-

closed sets. If F:XK(Y) is a pre-semi-open, irresolute and injective multifunctlon,

then F is continuous.

PROOF. Follows from Remark I, Theorems 7 and II of [5] and Remark 8 from [5].
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