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ABSTRACT. In this paper, a Kolmogorov-type model, which includes the Gause-type model (Kuang and

Freedman, 1988), the general predator-prey model (Huang 1988, Huang and Merrill 1989), and many other

specialized models, is studied. The stability of equilibrium points, the existence and uniqueness of limit cycles in the

model are proved.
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1. INTRODUCTION.

The topic of limit cycles is interesting both in mathematics and in science. This concept first appeared in print

in the famous paper by Poincare (1881, 1882, 1885, 1886). Then in 1926, van der Pol proposed an equation in the

study of a self-sustained oscillation occurring in a vacuum tube circuit which showed that the closed orbit in the

phase plane of the equation is a limit cycle as considered by Poincare. After this observation, the existence,

non-existence, uniqueness and other properties of limit cycles were studied extensively by mathematicians and

physicists.

By the 1950’s, many models from physics, engineering, chemistry, biology, economics, etc. were displayed as

plane autonomous systems with limit cycles. Since then, more and more mathematicians and scientists have been

attracted to the topic. Even in the renowned 23 Hilbert problems, you will find a place for limit cycles, specifically in

the 16th problem (see [9] for example).

In mathematical modeling of ecological systems, since the papers of May (1972 8 ]), and Albrecht, Gatzke and

Wax (1973 1]) finding conditions that guarantee the uniqueness of a limit cycle in predator-prey model has been

considered an outstanding problem. Recently, several results have been published (see, e.g. Cheng 1981 [2], Kuang

and Freedman 198817], Huang 198815], Huang and Merrill 198916]).

In this paper, a general model of Kolmogorov-type is investigated. This model takes into account all of the

above models as special cases. We are going to prove the stability of the equilibrium points, the existence and the

uniqueness conditions of limit cycles. Several known theorems will be easily derived again as an illustration of our

theorem.

The method used in this paper can be employed for use in the study of general Kolmogorov systems and will be

published elsewhere for further study.
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2. THE MODEL.

Consider the model

dx
d--- (x) (F(x) (3)

dy
a---: o(3) (V,(x) + (3))

(2.1)

where x is the prey density, y is the predator density, (x)F(x) is the intrinsic growth rate of the prey in the absence

of predators, and (y) (3) is the intrinsic rate of the increasing (or decreasing) of the predator. The term (x)zt (3)

represents the functional response of the predator, i.e.

#(x)(3)
x

is the rate of prey consumption per predator. Most of the authors simply take zt (y)= y, but a function zt (y) that

increases slower than the linear could be used to model interference among predators with each other’s hunting, or

faster than the linear could be used to model predator cooperation [3]. The term 0 (y)p(x) is the response of the

predator, which means the difference of the actual rate of increase and the intrinsic rate of increase of the predator.

In particular,

efy)(0) + (3)
y

is the death rate of the predator in the absence of prey.

For the following discussion, we need to assume:

(H,): ,p, st, O, e C ([0, m));F CI(0, o),F(0) (0, oo,](0) r(0)

t)(0) =(0) =0, ’>0 for x > 0,t’>0, ’ >0, ’ 0 for y > 0" there

exists - > 0 such that p() 0, p’(x) > 0 for x -.
Moreover, (x) is bounded by some linear function for O<xK. (HI*)

(H2)’ The curve t(3) F(x) 0 is defined for all x > 0, and p(x) + (y) 0

is defined for 0<x _< K.

(Ha)" There existsK>" such that F(K) O, F’(K) <0, F(x) > 0 for all0<x <K,

and for any - >K, F’(-) 0 ifF(-) 0.

Moreover, these exists a K* < such that F(K*) 0 and F(x) 0 for any x > K*.

(H4)" There exist positive numbers M and s such that t(y)> M0(y for

Y >-es, and also there exist positive N and eN such that 0(Y) > Ny

for y > eN

The constant K in (H1) and (H2) is the same as in (Ha).

It is possible to have F(0) in most of this discussion. In that case (0,0) is no longer an equilibrium point.

This discussion is in the interior of the first quadrant.

Clearly, system (2.1) consists of those studied by Lotka and Volterra, Gause, Rosenzwieg and MacArthur

(1963), Generalized Gause (Freedman, 1980), Hsu (1978), Hsu, Hubbell and Waltman (1978), Kazarinnoff and

Driessche (1978), Cheng (1981), Liou and Cheng (1988), Kuang and Freedman (1988), Huang (1988), Huang

and Merrill (1989). For example, Kuang and Freedman model (1988) is a special case of system (2.1) with F(0) <

, F(x) < 0 for all x > K, and (3) 0. Also, the assumptions (H*), (H) and (H4) employed here but not

employed in Kuang and Freedman we believe should be required there, also.
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3. THEOREMS AND PROOFS.

Clearly, system (2.1) with assumptions (H1) (H4) has a positive equilibrium (x’,y’), where " x" < K and

one or more saddles, for example, (K,0), and (0,0) (if F(0) <

For the stability of (x’,y’) we have:

THEOREM 3.1. Let

n(x, y) (x)F’ (x) + e(Y)’ (Y).

H(x*,y*) < 0, the equilibrium (x*,y*) is stable, while H(x*,y*) > 0 unstable.

PROOF. The Jacobian of system (2.1) at (x*,y*) is

j(x .,y ,) ( (x ")F’(x ")’ -(x ")’(Y ") Ie(y *)’(x *), e(y *)’(y *)

and the signs of the real parts of the eigenvalues are determined by

t(x ",y ’) =(x ")’(x ") +e(y ")’(y ").

(3.1)

But (2.1) implies that

Hence, for all >- 0,

which is a contradiction.

If (xo, yo) fl {(x,y): p(x) +@(y) O,F(x) -t(y) < 0,y > 0 }, then (2.1) and (Ha) imply that either x(t)

decreases to some constant, or there exists t2 > 0 such that x(t2) < K. By the same argument as the case x(0) < K, it

is necessary that

x(t)<K for all >_ t.

x(t) _< TI= max {K,x(0)}.

If (xo, Yo) {(x,y): p(x)+(y)>_O,F(x)-t(y)>O,y>O}, by the phase portrait analysis, the

trajectory starting at (x0, Y0) will cross the boundary of into fl. Hence there exists t3 > 0, such that

x(t)<K for all e t3,

and

x(t)<K for all >- 0.

Therefore, x(t) is bounded.

x’ (t 1) #(K)t(K) < 0

It is easy to see that Theorem 3.1 is valid.

THEOREM 3.2. Suppose

(i) there exists a co > such that M/co’(x) ’(x) <_ 0 for all x _> 0 and

lim (--M-M(x)-(x)) C(R) > 0,

(ii) F(x) < 0 for x > K*, where K* is as in (Ha).

Let x(t), y(t)be the solution of system (2.1) with a positive initial condition

x(0)= x0>0, y(0)= y0>0. Then there exists T>0 suchthat O<x(t)<T and O<y(t)<T for all t->0, and

exists to >- 0 such that 0 <x(t) <K for all >_ to.

PROOF. By the phase portrait analysis, it is clear that x (t), y (t) > 0 for all 0. If x (0) < K, then x (t) < K for

all >_ 0. Otherwise, there exists tl > 0 such that

x(tl) =K and x’(tO O.
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To show y(t) is bounded, by using (H4), we estimate the following

+ -k(x) (F(x) zt(y) + O(Y) (P(x) + (Y)
Co dt dt Co

M
<_ --qb(x)F(x) O(Y) (--qb(x) p(x)

Co Co

<_ mO(x)F(x) -p(y)C(R)
Co

(qb(x)F(x) + C(R)Nx(t) C(R) (e(y Ny(t)

C(R)N( --- x(t) + y(t))

1
< (q(x)F(x) + C(R)Nx(t)) C(R)N(--x(t) + y(t))

Co Co

1
Mo No(-x(t) + y(t)),

Co

1
where M0 max (-qCx)FCx) + NxCt)), No C(R)N.

CO Co

Since x(t) is bounded, so are (x) and F(x). Thus M0 is a constant.

Now, let z(t) satisfy

dz
Mo Noz(t)

dt

z(0) x(0) +y(0).
(3.2)

Then

MoZ(t) z(O)e-lqOt +’o (1 e-nOr). (3.3)

Since z(t) -,x(t) + y(t) > 0 [or all 0 and z(t), x(t) are bounded, y(t) is bounded. Let to max {tl ,t2 },

then 0 < x(t) < K for all _> to.

The proof of Theorem 3.2 is completed.

From the proof of Theorem 3.2, we have

THEOREM 3.3. Under the assumptions as in Theorem 3.2, if (x*,y*) is stable, it is asymptotically global

stable.

In the case when (x*, y’) is unstable, we have

THEOREM 3.4. There exists at least one limit cycle around (x" ,y’) if (x" ,y’) is a unstable equilibrium point

of system (2.1)

PROOF. Let /’1 be the curve p(x) + (y) =0. If gl intersects the ray x K, y >0 at Pa(xp,yp), then

F1 AP--’-U "’U B-’-U

where A (Xp1,0), B (0,ypl), O (0,0), is the boundary and any trajectory which intersects it either crosses from

exterior to interior or remains on it. Therefore, by the Poincare-Bendixson annular region theorem, there exists at

least one limit cycle around (x*,y*).

If t’l does not intersect the ray x K, y > 0 at all, letting

m0= max {F(x)}>0,

then by (H2), there exists Yl such that

:(yl) m0.
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Consider the auxiliary system

dx
d" ok(x) (mo r(y)

ely O(Y) 0P(K) + (2y,))
dt

and the trajectory starting at point PI’(K,2y will intersect the curve t since (Hi*).

(3.5)

P1

X

Fig. rt AP"-’ LI P-’tJ BO 00A is
the boundary of the Poincare-Bendixson
annular region.

Fig. 2 If /tdoes not intersect the ray x=K,
y>0, r’2 APt OPt P2UPzB’UB-’r-O’U’"is the boundary of the Poincare-Bendixson
annular region.

Suppose the intersection is P2(x,yp2). Let B’ (0,y&). Then

Fa AP---’ro P1 ’P 0 PB’ IJ B’O 0

is a boundary of an annular region. Since

F(x) (y) mo (y) < 0

(x) + (y) < (/c) + (2yl),
(3.6)

any trajectory intersects rz will either cross from exterior to interior or remain on it. The Poincare-Bendixson

Theorem guarantees that there is at least one limit cycle inside rz.
Therefore, in any cases there exists at least one limit cycle around (x*,y*).

Now, for the proving of the uniqueness theorem of limit cycles, we define"

F 0 int F *, F *is the Poincare-Bendixson’s outer boundary,

f {(x, y)[(x, y) e f"-, x>0},

fj= (x, y) (x, y) , sgn(W(x) +(y) (- 1)J}, j= 1,2,

e0 rYn6,

and let

IC(x, y)
H(x,y)

(x) +(y)
(x, y) fl 0 f2,
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w(x, y) (#’ (x)F’ (x) + (x)F" (x)) ((y) + V:(x)) V:’ (x)H(x, y), (x, y) ,
where H(x,y) is defined as in (3.1).

Assume

(Hs): H(x,y)lt > 0 and W(x,y)ln < O, and (3.7)

’ (y) 0 or ’ (y) ;t 0 a.e. on 6. (3.8)

Since W(x,y ") < 0 implies H(x,y) > 0, Theorem 3.4 guarantees that system (2.1) has limit cycles in .
Suppose C1 and C2 are two limit cycles around (x ,y) such that C1 C C2 and, without loss of generality, suppose C:
is stable from inside.

Let Q be the point on C such that

xo= rain {xl(x,y) C}.

Since (y) is strictly increasing, Q is unique, we claim that

LEMMA 3.5

xo . (3.9)

PROOF. If ’(y) 0 (or (y) 0) on 10, then (3.9) is clearly true. If ’(y) 0. Suppose (see Fgure 3),

Xo. >t’.

Let Q1 (xol ,YOl be the intersection of the ray x xo y > 0 with it0. Since

Yo > 0 and (3.8), there exists Qz (Xoa,yo) on l0 such that ’<xo <xo, 0 <yo2 <yol

Let

Define an auxiliary function

or, in the other form,

By (3.7),

We have

Xo- Xo Xo " Yoz }.th=min {-, 2 2

L(x, y) H(x, y) K(xO, y) (W(x) + !(Y) ),

L(x, y) (p(x) + (y))(K(x, y) K(xo, y)).

dK(x, y)
< O.

dx

L(x, y) 0 for (x, y) f] fl {(x, y)10 < x < xo.}.

On the other hand, L(x,y) is continuous in the 1-neighborhood of Q2" Nq (Q2), and

Nq (Q2) fl (x, y)Ix xo} (.

Thus,

H(xo, Yo2)L(x, y)1(22 H(x02, YO2) W(--@) --@) (P(x’2) + (Yo2))

H(xo, Yo) > 0.

Hence, there exists (0,) such that

L(x, y) > 0 for (x, y)N,(2) n {(x, y)I-< x < xo),

which is a contradiction to (3.13).

Therefore, the claim (3.9) holds.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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We also claim that on the periodic orbits C, we have

LEMMA 3.6

div((x)(F(x) t(y), O(y)Op(x) + l(y))dt

L(x,y)dt, for i= 1,2.

PROOF: By the Green formula,

div ((x)(F(x)-t(y),e(y)(P(x)+(y))dt

ok’ (x) (F(x) r(y)) + (x)F’ (x) + e’ (Y) (7,(x) + (y)) + O(Y)!’ (Y))dt

(V:(x) +l(y)) K(x,y) +/j(y-----’(q’(x)((y)-F(x))
o’ (y) ((x) / (y))l &

OP(x) +(y))(X(x, y) K(xo, y)dt

L(x, y)dt, 1,2,

since,

((x) +(y)) K(xo, y) +(y--- (O’(x)((y) -F(x))

O’ (y) (p(x) + (y)) dt

=0.

Now, we are in the position to prove the following uniqueness theorem.

THEOREM 3.7. In addition to assumption (Hs), if

(F(x) zr(y)) Ly(x,y) >- 0 for (x,y)e fl,

then there exists at most one limit cycle in system (2.1).

PROOF. As in Fig. 4, let t0 intersect C1 at At, Az, Cz at B1, Bz.

Then

(3.16)

(3.17)

C1 =A1A4 U A4Q O QAI

C2 =B3B2 LI B2B4 U B4B5 U BsB3.
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Hence,

L(x, y)at t.(x, y)at

cl c2

(3.18)

y: xo X 0 xo Y:

Fig. 3 The assumption xo > .
results in a contradiction.

Fig. 4 It is impossible that the
system (2.1) has two limit cycles.

It is not hard to see that

K.(x, y)
dxdy + fK(x, y) K(xO, y)

+3 K(x, y) K(xO, y)
o(y)

ay

>0,

since Kx (x,y) _< 0 and Kx (x,y) 0 for xal -< x<K.

Suppose

A4Q’ y=y(x), xo. <_ x < XA4,

and

(3.19)
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Then

B2B+" y=y2(x), x0 <_ x <_ x/t+.

[xA+ L(x, y)

"xo (x) ((x) n’(y2))
dx f+A+ L(x, Yt)

+"o (x)(3 :(y,))

f’+ (F(x) (y) (t.(x, y) t.Cx, yl) + t.(x, y2) ((y2) (y,)
dx’"o (x)(F(x) (y2)) (.(x) (y,))

>0, (3.20)

since (3.17) and (p(x) + (y2))(K(x,y2) -K(xo.,y2)) >- 0 for x0 <_ x <_ xa+
Similarly,

Finally,

(3.21)

y)dt | "(p(x) + (y))(K(x, y) K(xO, y))dt
f

JB4B

5 (X(x, Y)ofy)-r(xo, y)
dy

f’+ K(x, y) K(xO, y)

(3.22)

since forx < xo, K(x,y) K( xo,y) >_ 0.

From (3.19) to (3.22), we have

L(x, L(x, > o.f
y)dt y)dt

C JC2
(3.23)

f
Since L(x,y)dt < O, so L(x,y)dt<0.

JC1 JC2

NOW, if we can prove C1 is not a semi-stable limit cycle, then C2 must be internally unstable. That is

L(x, y)dt 0,
c2

which contradicts the fact

L(x,y)dt < O.
c2

Now consider the following system containing a parameter

dx
d--: (x) (l(x) (y) tr

d--: Ors) ((x) + (y)
(3.24)
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where

Let

and

//’(x, y) (x)iV’ (x) + o(y)’ 0’)

X’(x, y) /7(x, Y.__2__) (x, y), v2(x) +@)

W(x, y) (’ (x)1’ (x) + (x)" (x) ((y) + (x)) ’(x)/7(x, y).

Clearly, if y is small enough, then all the assumptions for system (2.1) are satisfied for system (3.24). Thus, if

system (3.24) has two limit cycles and L’’z, C L’z, then we have

div(1y, Q)dt < div(1r, Q)dt < O.
J

(3.25)

Furthermore, let

Then

Q(x,y,,)
(3.26)fl(x, y, ,) tan-’/Y(x, y, )

> 0 (3.27)

for all ordinary points (x,y) of system (3.24).

Also, the equilibrium points of system (3.24) are not dependent on ,. Thus, system (3.24) forms a

generalized rotated vector field in

According to the theory of generalized rotated vector field (see [9], for example), for sufficiently small y, >

0, system (3.24) produces a generalized limit cycle Ca C Ca which is at least stable internally and a generalized limit

cycle Cz D C, which is at least unstable on one side. This is a contradiction to (3.25). We, thus, complete the

proof of Theorem 3.7.

4. EXAMPLES AND DISCUSSION.

EXAMPLE 1. (Huang 1988 [5], Huang and Merrill, 1989 [6])

dx
(x) (F(x) (y)

dt

dt

(4.1)

with the assumptions (H+)-(H4) in [6].

It is easy to see that system (4.1) is a special case that (y) 0 in (2.1); and the assumptions (H;)-(H,0 in

Chapter 2 of this paper are satisfied. Therefore, Theorem 3.1 implies that if F’(x) > 0 the equilibrium point

(x*,y*) of (4.1) is unstable, and if F’(x*) < 0 it is stable. Theorem 3.4 tells us that when (x*,y*) is unstable there

exists at least one limit cycle in (4.1). For the uniqueness of limit cycles, by Theorem 3.7, we have:

THEOREM 4.1. (Huang and Merrill [6]) In addition to the assumptions (H;)-(H4) in [6], if

F’(x’)>O and (’(x)F’(x))O’(x)
then there is a unique limit cycle around the equilibrium point (x’,y) in (4.1).
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PROOF. Since (y) 0,

(Hs) is hold. Furthermore, if (y)=O,

F’(x *) >0 and (q(x)F’(x) ), 0, ,(x)

L(x, y) #(x)F’ (x) p(x) (4.2)(xo)

which is only a function of x. Hence Lr(x,y 0, and consequently (F(x) :t (y)) Ly(x,y) 0 for (x,y) E f.

Therefore, the conditions of Theorem 3.7 are all satisfied. Employing theorem 3.7 will end the proof of Theorem

4.1.

REMARK. In [6], when we proved the uniqueness of limit cycles in (4.1), we employed the Zhang theorem

(or equivalent, Cherkas and Zhilevich theorem). But in this paper we do not need to use it. We also may simplify

our assumptions for the existence and uniqueness of limit cycles because some of the assumptions are made for the

global stability such as Theorems 3.2 and 3.3.

The Zhang theorem and Cherkas and Zhilevich theorem can be found in [9].

EXAMPLE 2. (Kuang and Freedman, 1988 [7])

dx

a-T xs(x)

dY tl(y) (_ ,+ q(x)) (4.3)
dt

with the assumptions (H1)-(Hs) in [7].

Clearly, system (4.3) is a special case of (4.1) and hence if all the assumptions in this paper are satisfied,

Theorem 3.7 is applicable.

The original proof of the uniqueness of limit cycles in [7] is based on Zhang’s theorem. However, since the

assumptions (H1 *), (Ha) and (H4) in this paper are not assumed there, the existence of limit cycles is not guaranteed

and some arguments need to be modified.

As an example, let us consider the following system:

dx
x (1 + 2x x2) yx

at (4.4)

=(-+x),
dt

which satisfies all the required hypotheses by Kuang and Freedman [7]. Unfortunately, since (4.4) in [7],

"= e(s’) (s+x’)
2 2

--------’ (4.5)-x+
By (4.1) in [7], X+x* =x. Hence

2

(4.6)

Therefore, u has no definition on

,+
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and consequently the hypothesis that (v)/ F(u) 0 is defined for all u e (- m,+ m) has not been sattsfed. Thus,

Zhang’s theorem is not applicable and the uniqueness of limit cycles can not be obtained by the argument m [7].

Clearly, system (4.4) does satisfy all the requirements of Theorem 4.1. So if our theorem is employed we can

still have the uniqueness result for system (4.3).

The idea used in this paper is possible for use in determining the uniqueness conditions of limit cycles in the

general Kolmogorov system. This work will be published in a separate paper.
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