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ABSTRACT. In the present paper we consider the magneto-thermo-elastic wave produced
by a thermal shock in a perfectly conducting elastic half-space. Here the Lord-
Shulman theory of thermoelasticity [1] is used to account for the interaction between
the elastic and thermal fields. The solution obtained in analytical form reduces to
those of Kaliski and Nowacki [2] when the coupling between the temperature and strain
fields and the relaxation time are neglected. The results also agree with those of

Massalas and DaLamangas [3] in absence of the thermal relaxation time.
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1. INTRODUCTION.

Kaliski and Nowacki [2] investigated the problem of magneto-thermo-elastic
disturbances generated by a thermal shock in a perfectly conducting elastic half-space
in contact with a vacuum. It was assumed that both in the medium and in the vacuum
there acted an initial magnetic field parallel to the plane boundary of the half-space

and there was no influence of coupling between temperature and strain fields.

Later, Massalas and Dalamangas [3] considered the same problem where the coupling
between the temperature and strain fields was considered. Very recently Chatterjee
and Roy Choudhuri [4] extended the problem [3] 1in generalized thermo-elasticity of

Green and Lindsay taking into account the two relaxation times.

In the present paper we extend the problem [3] in generalized thermoelasticity by
using the thermal relaxation time of Lord-Shulman theory [1]. The solutions for
temperature distribution, deformation and perturbed magnetic field in the vacuum are
obtained in analytical form in the first power of the magnetothermo-elastic coupling
parameter e and relaxation parameter Eo" In absence of e, ro' the solutions agree

with those in [2] and in absence of 16" the results agree with those in [3].
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Surface stress for different times is calculated and graphically presented. It

is believed that this particular problem has not been considered earlier.

2. PROBLEM FORMULATION.

We assume that a magneto-thermo-elastic wave is produced in an elastic half-
space x, > 0 due to the thermal shock e(o,t)seoH(t:) applied on xl=0 where eo is a
constant and H(t) is the Heaviside function. We also assume that in both the media
there 1is an initial magnetic field acting 1in the direction of x3—axis. The
simplified equations of slowly moving bodies in electrodynamics after linearization

are the following:

> > 4y
Vxh"z-j)
wo R
Wi = - 22 2 (2.1
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where E denotes the electric field, R is the perturbation of the magnetic field, I-To is
the initial constant magnetic field, fis the current density vector, U denotes the
displacement vector, ¥ is the magnetic permeability, ¢ is the electric conductivity
and c is the velocity of light. The displacement equation of motion 1in thermo-

elasticity including the electromagnetic effect after linerization is,
vZ-» Yo -»
wd + Oy ¥ () + 200hD) x H ) - vl = o4 . (2.2)

Also the modified form of Fourier's law of heat conduction taking into account the

thermal relaxation time [1] is
pe (84 7. 0) + 4T (A+ 1 8) =K e, ,, (i=1,2,3) (2.3)

where A,y are the Lame' constants, y is equal to (3Xt4y) aps  Op is the co-efficient

of linear thermal expansion, 6 is equal to T—To; TO,T are the reference and absolute
temperature of the body respectively; K is the co-efficient of heat conduction; p is
the mass density; <, is the specific heat at constant volume; i is the relaxation
time. The magneto-thermo-eclastic wave propagated in the medium X, 2 0 is assumed to
depend on Xy and time t.

For l:fo = (0,0,H3) equations (2.1) reduce to

I . . E 3h
o3 > c 2 c 3
=230, 4,0, & " (0,0, =) §=% 0, =, 0. (2.4)
Equations (2.2) and (2.3) then lead to
2 Yu 20 _ -
(x2p + aop) ax2 - y-&—l- =y (2.5)

1
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30 32 8 azul a3u1 82 [}
pc (= + 1 —5) + 4T ( + T ) =K (2.6)
v’ 3t o 3!:2 o axlat o ax3t2 axl2
byt
where a = Tnp is the Alfven wave velocity. For convenience, we shall use the
notations u1 = u, xl = Xe.

In vacuum the system of equations of electrodynamics are

1

2y -5 2P nj-o0

& e ot

(2.7)

2 2

) 1 9 o
(212830

2" 2,205

where x' = - x.

The components Tll and Tl‘; of Maxwell's stress tensor in elastic medium and in vacuum

are

= - MO °o . _-_1
T Zy Pafly and T)) 7 B3l

The normal mechanical and thermal stress is
u
°ll ()‘ + 211) -3; Y6 -

The boundary conditions to be satisifed are

o
ot Ty " T =0 x=x' =0 (2.8)

275 »x =x' =0 (2.9)

&o,t) = eol-l(t). (2.10)

3. SOLUTION OF THE PROBLEM.

To find the solution of the problem we now introduce the following notations and

non-dimensional variables

2
2 _ M2y 2 2 2 CoX et
CI o C°=a°+cl, g-—K-, -l--_":_,
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C(x+2u+a p) YZT
o 2] o
U= 7 U, z =5, e ———
Yo o C (x2u+ a’p)
€ o
2 2
* « o co

2 2
v _.3%5 - 3_%.. 0, £>0
352 T
2w oz Bu_ ., S
o
3 JE aT2 9EdT o agatz
2.0
a3 a°h
32_ 2 23=o,g'>o
9L T
ﬁ- o: = ' =
2 ? +Bhy =0, E£=¢ 0
2 sh
3 U 3
— -5 =0, £=¢ =0,
Bzarz aE
%
Z(o, ) = 7 H(D),
o
H w H, yT C
3 o030 [
where B, = , = y B=—o—, E' = —£,
17 % B o2 c

Initial conditions in the new variables are

U( an) = 0, Z(E,o) = 0’ 32_(3%21_ 0.

We now introduce a potential function ¢ defined by

=3¢,
U=

Using (3.7) in (3.1) and then integrating we get

z(g, 1) = (

2 _

2e

a2
—_E) ¢in £> 0.
T

- K
w\)

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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Using (3.7), the equation (3.2) leads to

2 2

3 4
3z _ 3 _ I b _ 3 ¢
2 %3¢ T 2 et 3 3=0 (3.9)
ag A 3t 3% 3t

yz
31‘2

In the Laplace transform domain the equations (3.8), (3.9) and (3.3) become

= 32 2. -
Z(¢g,s8) -(——-2--3 ) ¢ £E>0 (3.10)
13
o 2, - 23
(5 -s-sHz=cstrus) 24 £ 0 (3.11)
3 Y
Bo= ey o™, >0, (3.12)

In Laplace transform domain, the boundary conditions (3.4) - (3.6) reduce to

2-
3—2‘1’-z+ slﬁ3°=0, £=0 (3.13)
9E
- a0

293¢ _ 73 _ - f = 3.14
823 3E 3E' 0, & £ 0 ( )
Z( % 1 (3.15)

0,8) = T 5° .

o

Eliminating z from (3.10) and (3.11) we get

4- 2-
22 rerstire) tsls 22+ 83(14re) G = 0. (3.16)
(13 ° e °

The equation (3.16) reduces to (31) in [4] on setting o' = o*' = Tc'a'

The general solution of (3.16) vanishing at £ = = is

_ NE M
WEs) =Ce” " +Ce T, £>0 (3.17)

where )‘1’ xz are given by the roots of the equation

- s (It ks t(14e) v} 2+ &304+ ts) = 0. (3.18)
Hence

s 2,2, 2 2 2
A1,2 [2{s+1+e0-r(;es+t(')s) + [(1+€ 'l'(" + 'r(') + 251':) + 2(-:1'(') - 21;)5

1
+2(e- W2er + 1+ Fe) s + (ee? ]2 (3.19)
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The equation (3.19) agrees with that of (34) in  [4] for o'=q*'= .
For a' = o*'= 0, the equations (3.16), (3.19) are in agreement with that of (24) in
[3]. Thus the equations (3.1), (3.2), (3.16), (3.19) are more general in the sense
that they incorporate the effect of thermal relaxation time of Lord-Shulman theory.
From (3.10) using (3.17) we have

MeE

_ 8 -
2ge) =c (X -she Tro(d - e 2, £>0. (3.20)

From the boundary conditions (3.13) - (3.15) taking into account (3.17) and (3.20) we

obtain a linear algebraic system with respect to Cl’ C2 and C3 as
2 2 - =g = 3.21
Ci8” +Cys” + Bcy 0, at £= 0 ( )
BysAjc) + By8AC, - sc3 =0, at £=g'=0 (3.22)
2 2 2 2. &%
- - - 3.23
CrL(X = 8%) +Cy (X - 87) s ( )
The constants Ci(i-1,2,3) being determined by (3.21) - (3.23), the solutions
for ;,i, ﬁ, ﬂ3° are given by
-\ E ‘Xzi

- 6, (sB+B8,1,) e 1 (s + BBy} e
“Eas’EyTl)) -T—[

5 ] (3.24)
o 8(A = X)) (B 88" + B +A)s + 8 8\ ),

-\ E -ME
_ 8, Xf-sz)(ssﬂslallz) e 1- (A%-sz)(s&'-elsle) e 2
z(gs,ev) =3 [ 7 ] (3.25)
° sO=0) (B Bs” + B(A X)) + 8,8 ) )

“hE -NE
_ 6 A(sg+ B,B)A) e - A (sB+ B B,L) e
Wgs, et = > [ O 1 1% 1, £>0  (3.26)
o 8(X =) (B B8" + B(A X8 + B8, M)y
382 e-BBE'

-0 o
h3 (E'st E)TO') -T_

o 518282 + B(A1+A2)s + B BA N

» ' > 0. (3.27)

Since e, ré <1 for small thermo-elastic couplings, we expand the functions ;, ﬁ, ﬁao
into Maclaurian's series and retain the first two terms in the series expansion to

obtain
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+) (- ————5'/3-2" 3| (3.28)
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B e
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~&s - -
88,8, e SR ok s

+ }+ 1 - — —
2(8+8,8,) e T Saa 2Ty ~ 205, EYAGD

-& -
- Be 5+ B e 5} (3.29)
(848 8, (s-1)°  (8+8 8,)/a(s-1)

7,0 y il 2t seye
£',8.6,1T.") =5 - e
3 ° 7 To (praysy) A 2(prs 8y kD

82/8- B8

]
20p+8, 8,) (fo+D)”

- '
TO

(3.30)

Taking inverse Laplace transform we obtain (Chatterjee (Roy) and Roy Choudhuri [4],

Hetnarski [5], Oberhettiner and Badii [6]),
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Z(E,t,e,to') =T—° [erfc (—2%) + ¢ {FST (8 e(raﬂ(rg) + 2’228 [@;
o T 172 172
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) ' 8 '
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where the functions fi(E, 1), 1=1,2,3,4,5 are given by

T
fl(E,‘t '% [e_gerfc(——g— - v[r) + egerfc(—gz'i' v/';)]
2/t 2/<
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f (E,r)-—[e erfc(—-f)-e erfc(——+ Ay
/t /<
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I £ '(f‘ (¥® & _ L
£.(8, 1D == erfe(—>) + 25 e + (2r&1e" " erfe( )
3 o T 2/x
2
- &
e = erfe(E f,) 28 4% o) o ™ erte(-i + /D)
2/t " 2/t
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£,(60 = AR T, (g o T EDerre—Ee - /o)
o " 2/tm
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where erfx and erfcx denote the error function and complementary error function

respectively.

4, NUMERICAL RESULT.

The surface stress is given by

7.0
11 e 2. 1
g e"(1-erf /7 - ey 228 + (1-2:De TU-ert /D))
Bz1+33)
1 T
-1 f - 1e (l-erfvT) + ﬁ}
° 2/nt v
where By _Blﬁ

If there 1is no coupling between the electromagnetic field and strain
0

field, H3 =0, 82 = 0, 33 + 0 and B is finite so that Tll =0on = ag .

In presence of the electomagnetic field and strain field, the surface stress is given

by

o
T
11
- = X(1,6, 1)
B°H3 32 o
44To B( l+83)
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where -
A e . T o2y T, -
X(T,E,To) e (1 - erfyT) 2(1+B3) { 21/1r + (1-217)e (l-erfv/1)}
- ré{—lz: - 1 e (lmerf/T) + /3}
2/t "

We can assume 83 << 1 since ¢ >> 1 and a, and Co are finite. We take 83 = .05.
For numerical calculation we take the material of the half-space to be copper for
which € = 0.0168. Ii we assume that a representative value of the relaxation
time L is 10_11 (see [7]), then the non-dimensional thermal wave speed in copper

should be approximately equal to 0.66.

Then 1; = 2.3 (For thermal properties and sound wave speed in copper, see ref.

(sn.

Surface stress X for various values of times T are exhibited in the following

table and also graphically represented.

-10X
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