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ABSTRACT. An ideal on a set X is a nonempty collection of subsets of X closed under the operations of subsct
(heredity) and finite unions (additivity). Given a topological space (X,r) an ideal 3 on X and ACX, ¢(A) 1>
defined as U{U€T:U-A€93}. A topology, denoted r*, finer than 7 is generated by the basis {U-I:U€r, €3},
and a topology, denoted <i(r)>, coarser than 7 is generated by the basis ¥(7) = {¥(U):U€r}. The notation
(X,7,9) denotes a topological space (X,7) with an ideal 3 on X. A bijection f:(X,7,3) — (Y,0,3) is called a

*-homeomorphism if f:(X,7*) — (Y,0*) is a homeomorphism, and is called a y-homcomorphism if
£:(X,<¥(7)>) —(Y,<¥(o)>) is a homeomorphism. Properties preserved by *-homeomorphisins are studicd as
well as necessary and sufficient conditons for a y-homeomorphism to be a *-homeomorphism. The semi-
homeomorphisms and semi-topological properties of Crossley and Hildebrand [Fund. Math., LXXIV (1972), 233-

254] are shown to be a special case.
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1. INTRODUCTION

Given a topological space (X,7), a nonempty collection of subsets 3 on X is called an ideal [11] if the
following hold:

I.  If A€3and BCA, then B€J (heredity); and

II.  If A€J and B€J, then AUBES (finite additivity).
An ideal is called a o-tdeal if the following holds:

L. If {Ap:n=1,2,3,...} is a countable subcollection of 3, then U{A:n=1,2,3,...} €3 (countable additivity).

The notation (X,7,3) denotes a nonempty set X, a topology 7 on X, and an ideal 3 on X. Given a point
x€X, we denote by 7(x) the “r neighborhood system at x”; i.e., 7(x) = {U€r:xeU}.

Given a space (X,7,9) and a subset A of X, we denote by A*(3,7) = {x€X:UNAg3 for every U€T(x)}, the
local function of A with respect to 3 and 7 [21]. When no ambiguity is present, we simply write A* for A*(3,7).
We let CI*(A) = AUA* which defines a Kuratowski closure operator for a topology 7*(3) finer than  (i.c.
rC7*(J)), also denoted simply as 7* when no ambiguity is present. A basis 4(3,7) for 7* can be described as
follows (22]:

B(3,7) = {U-I:Uer, 1€3}. We will denote B(3,7) simply by g when no ambiguity is present.
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Given spaces (X,7,9), (Y,0,3), and a function £:(X,7,3) — (Y,5,3), we will call f a *-homeomorphism with
respect to t,9,0, and 3 if f:(X,7*) — (Y,0*) is a homeomorphism, or simply a *-homeomorphism when no
ambiguity is present. A topological property P will be called a *-topological property with respect to 3,0, and
§ if it is preserved by any *-homeomorphism with respect to 7,3, and } or, following our convention, simply a
*-topological property when no ambiguity is present.

In this paper we study *-topological properties and show that the semi-topological properties of Crossley
and Hildebrand [4] are a special case.

Given a space (X,7,9) and ACX, we denote by Int(A) and CI(A) the interior and closure of A with respect
to 7 respectively, and by Int*(A) and CI*(A) the interior and closure of A with respect to 7* respectively. We
abbreviate “if and only if” by “iff”, and use the symbol “—” to mean “implies” or “which implies™ as fits the

” is also used to denote functional correspondence; i.e. *lRA—B".

context. Of course the symbol *—
2. *-HOMEOMORPHISMS AND SEMIREGULAR PROPERTIES

Since *-topological properties are defined as those preserved by *-homeomorphisms, sufficient conditions for
a function to be a *-homeomorphism are a central issue.

DEFINITION. A space (X,7,9) is said to be 3-compact [14, 19] if for every open cover {Ug:a€A} of X,
there exists a finite subcollection {Uq;:i=1,2,...,n} such that X-U{Ugq;:=1,2,...,n} €3.

Observe that whenever J is an ideal on X and f:X —Y is a function, then f(3) = {f(I):1€3} is an ideal on Y.

The following theorem gives sufficient conditions for a function to be a *-homeomorphism.

THEOREM 2.1. [6] Let f:(X,r,9)—(Y,o) be a bijection with (X,r) 3-compact and (Y,o) Hausdorff. If
f:(X,7*) — (Y,0) is continuous, then f is a *-homeomorphism with respect to 7,3,¢, and f(3).

The following theorem shows that 3-compactness is a *-topological property with respect to 3 and f(3).

THEOREM 2.2. Let f:(X,7,9) — (Y,0,f(3)) be a *-homeomorphism. Then (X,7) is 3-compact iff (Y,o) is
f(9)-compact.

PROOF. NECESSITY. Assume (X,7) is 3-compact and let {V4:a€A} be a o-open cover of Y. Then
{t'l(Va):aeA} is a 7*-open cover of X. It is shown in [14] that (X,r) is 3-compact iff (X,7*) is 3-compact.
Thus there exists a finite subcollection {t’l(VQi):izl,?,...,n} such that X-Ufl(Vo,i) = I€3. Consequently,
Y-UVq,; = f(I)€f(3) and it is shown that (Y,0) is f(J)-compact.

SUFFICIENCY. Assume (Y,0) is f(3)-compact and let {Uy:a€A} be a r-open cover of X. Then
{f(Uq):a €A} ia a c*-open cover of Y, and there exists a finite subcollection {f(Uo,i):i=l,2,...,n} such that
Y-Uf(Uai) = f(I)€f(3). Then X-UUgq; = I€3, and the proof is complete.

Given a space (X,7), recall that a subset U of X is said to be regular open if U = Int(CI(U)). We denote
by RO(X,7) the collection of all regular open subsets of (X,7). The collection RO(X,7) is a basis for a topology
coarser than 7, denoted 7g, called the semiregularization of 7.

DEFINITION. Given a function f:(X,7) — (Y,0) from a space (X,7) to a space (Y,0), f is said to be a
8-homeomorphism [15] iff f:(X,75) — (Y,05) is a homeomorphism. A topological property P will be called a
semiregular topological property iff it is preserved by é-homeomorphisms.

Another approach to semiregular topological properties is to define them to be topological properties shared
by topologies which have the same semiregularizations. This approach is easily seen to be equivalent to the
approach in this paper.

Given a space (X,7,3), 3 is said to be 7-boundary [14] if rN3 = {0}.

THEOREM 2.3 [9, Theorem 6.4). Let (X,7,3) be a space with 7n3 = {8}, then 75 = (v*)s.

Using the previous theorem, we can show the following.

THEOREM 2.4. Let f:(X,7,9) — (Y,0,3) be a *-homeomorphism with 7N3 = {@} and oNJ = {#}. Then
any semi-regular property is a *-topological property.

PROOF. Let P be a semi-regular property and assume (X,r) is P. Then (X,rg) is P by definition
—(X,(7*)s) is P by Theorem 2.3 — (X,7*) is P by definition — (Y,0*) is P since semi-regular properties are
topological — (Y,(c*)s) is P by definition —(Y,o5) is P by Theorem 2.3 —(Y,o) is P by definition.
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We denote by N(7) the ideal of nowhere dense sets with respect to 7. Given spaces (X,7) and (Y.o).
*-topological propertics with respect to 7. .N(7), o, and N(o) will be called a-topological propertics since
*(N (7)) is conmonly known as the a-topology in the literature, and is denoted 7% [16,17].

Another approach to a-topological properties is to define them to be topological propertics shared by 7 and
. This approach is easily scen to be equivalent to the one taken in this paper.

As an casy corollary to the previous theorem, we obtain the following result of Jankovic’ and Reilly.

COROLLARY 2.5 [10] Semiregular properties are a-topological propertics.

PROOF. Given a space (X,7), observe that N(7)Nr = {#} and apply Theorem 2.4.

The list of semircgular propertics which have been established in the literature is quite extensive and
includes: Hausdorff, Urysohn, almost regular, connected, extremally disconnected, H-closed, S-closed. hght
compact, and pseudocompact.

3. THE LIFTING THEOREM

Given a space (X,7), a subset A of X is said to be semi-open [12] if there exists a U€T such that
UCACCI(U) or, equivalently, if ACCI(Int(A)). A function f:(X,r) — (Y,0) is said to be pre-seme-open [1] if
for cvery semi-open set ACX, f(A) is semi-open in Y; and is said to be irresolute [4] if for every semi-open set
BCY, fl(B) is semi-open in X. A bijection f:(X,7) — (Y,0) is said to be a semi-homeomorphism [4] if 1t is
both pre-semi-open and irresolute. Properties preserved by semi-homeomorphisms are said to be sem-topological
properties [4].

It can be shown that semi-topological properties are a-topological properties as a consequence of Theorem
2.6 of [4] and Theorem 2 of [3]. We will establish this fact (specifically we will show that the semi-topological
properties are precisely the a-topological properties) as a corollary to the Lifting Theorem proven in this scction.
First however we need several preliminary results.

In {13] Natkaniec defines an operator ¥(3,7):P(X) — 7, where (X,7,3) is a space and P(X) denotes the
power set of X, as follows: for every ACX, ¥(3,7)(A) = {x: there exists a Uer(x) such that U-A€3} and
observes that ¥(3,7)(A) = X-(X-A)*. We denote ¥(3,7) simply by ¥ when no ambiguity is present. The
operator 1 has been studied in (7] where the following is observed:

P(A) = U{Uer:U-A€l}.
Note that ¥(A) is open for every ACX.

THEOREM 3.1. Given a space (X,7,3),

T*(3) = {ACX:ACH(A)}.

PROOF. Denote {ACX:AC¥(A)} by o. First, we show that ¢ is a topology. Observe that #Cy(#) and
XCy(X) = X. Now if A,Beo, ANBCy(A)NyY(B) = y(ANB) — ANBe€o. If {Ag:a€l)Ca, then
AaCY(UAy) for every a—UA 4 C9(UAy), and we have shown that o is a topology.

Now if Uer*, and x€U, there exists a V€ 7(x) and 1€9 such that xeV-ICU. Clearly V-UCI so that
V-U€dby heredity, and hence x€¢(U). Thus UC#(U) and we have shown r*Ca.

Now let A€o. We have by definition that ACY(A) — ACX-(X-A)*— (X-A)*CX-A — X-A is 7*-closed
and hence A€7*. Thus ¢ = 7* and the proof is complete.

It is interesting to observe the the specific form of A*(N(r),r) = CI(Int(Cl(A))) for ACX [21], and,
consequently, in this case we have ¥(A) = Int(Cl(Int(A))). It is known that A*(M(7),7) is regular closed [21],
where Mb(7) denotes the ideal of meager sets, and hence ¥(A) is regular open in this case.

Given a space (X,7,3), 3 is said to be compatible with [17], denoted 3~7, if the following holds for every
ACX: if for every x€A there exists a U€r(x) such that UNA€Y, then Acd. Ideals having this property are
called “supercompact” in [21], “adherence ideals” in [22], and are said to have the “strong Banach’s localization
property” in [20]. For several characterizations of compatibility, see [9]. One significant consequence of I~ is
that 8 = 7* and all open sets in 7* are of the simple form U-I where U€r, I€3. However, we can have 8 = *

and 3 not be compatible with 7 as the ideal of finite sets in an infinite discrete space shows.
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It is known that N(7)~7, and M(7)~7 (this is known as the Banach Category Theorem) ([21], [18]). It
is also known that if (X,7) is hereditarily Lindeldf and 3 is a o-ideal then 3~7 [9].

A convenient characterization of 3~ r is the following.

THEOREM 3.2. [7] Let (X,7,3) be a space. Then 3~ iff (A)-A€Y for every ACX.

The following result is a straightforward consequence of the previous theorem.

THEOREM 3.3. Let (X,7,9) be a space with 3~7. Then y(A) = U{y(U):Uer, y(U)-A€3}.

PROOF. Denote U{y(U):Uer, p(U)-A€d} by ¥'(A). Clearly, $/(A)C#(A). Now let x€4(A) which
implies there exists U€r(x) such that U-A€3. By Theorem 3.1, UC#(U), and ¢(U)-AC[y(U)-UJU[U-A] —
Y(U)-A€9. Hence x€y'(A) and the proof is complete.

Observe that if X —Y is an injection and } is an ideal on Y, then FI(J) = {fl(J):.l €3} is an ideal on X.

If (X,7,9) is a space and B is a basis for a topology on X, then ¢(%B) is a basis for a topology on X coarser
than 7 [7]. Denote by <i(B)> the topology generated by ¥(B) = {y(B):B€B}.

Note that the previous theorem shows that ¥(3,7) = ¥(3,<¥(3,7)(7)>), if I~7.

THEOREM 3.4. Let (X,7,9) and (Y,0,3}) be spaces with f:(X,7) — (Y,<#(c)>) a continuous injection,
3~o, and rl(z)ga. Then ¥(f(A))Cf(¥(A)) for every ACX.

PROOF. Let yey(f(A)) where ACX. Then by Theorem 3.3, there exists V€o such that ye€y(V) and
W(V)-f(A)€3. Now we have Fl(p(V))er(fl(y)) with Fl[p(V)-f(A)]es — Fl(w(V))-Aed — rly)ewA) —
y€f(¥(A)), and the proof is complete.

THEOREM 3.5. Let (X,7,9) and (Y,0,}) be spaces with f:(X,<y¢(7)>) — (Y,0,3) an open bijection, 3~7,
and f(3)CJ. Then f(¥(A))C¥(f(A)) for every ACX.

PROOF. Let ACX and let yef((A)). Then £1(y)€$(A) — there exists Ve such that [l(y)ep(V) and
¥Y(V)-A€3 by Theorem 3.3. Now f(¥(V))€o(y) and f((V))-f(A) = flp(V)-A]€f(3)C3. Thus yey(f(A)), and
the proof is complete.

THEOREM 3.6. Let f:(X,7,3) — (Y,0,3}) be a bijection with f(3) = 3. Then the following arc equivalent:

(1) fis a *-homeomorphism;

(2) f(A*) = [f(A)]* for every ACX; and

(3) f(¥(A)) = ¥(f(A)) for every ACX.

PROOF. (1) — (2). Let ACX. Assume ygf(A*). This implies £ 1(y)gA*, and hence there exists
UEr(fl(y)) such that UNA€3. Consequently f(U)€a*(y) and f(U)Nf(A)e§ — ygf(A)*(§,0*) = f(A)*(%.0).
Thus [f(A)]*Cf(A*).

Now assume yg[f(A)]*. This implies there exists a V€o(y) such that VNf(A)e§ — f'l(V)er*(fl(y)) and
rl(v)nAes — rliy)gA*(9,7*) = A*(3,r) — ygf(A*). Hence f(A*)C[f(A)]* and (2) holds.

(2) — (3). Let ACX. Then f(¥(A)) = f[X-(X-A)*] = Y-f(X-A)* = Y-(Y-f(A))* = ¥(f(A)).

(3) = (1). Let Uer*. Then UC¥(U) by Theorem 3.1 — f(U)Cf($(U)) = %(f(U)) — f(U)€o*, and
hence f:(X,7*) — (Y,o*) is open. Similarly, fl:(Y,cr*) — (X,7*) is open and f is a *-homeomorphism.

DEFINITION. A function f:(X,r,9) — (Y,0,3) will be called a y-homeomorphism wsth respect to 7, 3, o,
and } (simply a y-homeomorphism when no ambiguity is present) iff fi(X,<¥(7)>) — (Y,<y(0)>) is a
homeomorphism.

THEOREM 3.7. Let (X,7,9) be a space, then <¢(7*)> = <y(7)>.

PROOF. Note that for every U€r and for every 1€3, we have ¥(U-I) = y(U). Consequently, ¥(8) =
(1) and <¥(B)> = <¢(r)>. It follows directly from Theorem 11 of [7] that <¥(B8)> = <¥(r*)>, hence the
theorem is proved.

Our next theorem is the main theorem of this section.

THEOREM 3.8. (Lifting Theorem). Let f:(X,7,3) — (Y,0,3) be a bijection with f(3) = §.

(1) If fis a *-homeomorphism, then f is a ¥-homeomorphism.

(2) If 3~7, §~o0, and f is a y-homeomorphism, then f is a *-homeomorphism.
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PROOF. (1) Assume [:(X,7*) — (Y,0*) is a homeomorphism, and let P(U) be a basic open set in
<P(r)> with Uer. Then f(y(U)) = (f(U)) by Theorem 3.6 — f(y(U))e P(a*), but <P(a*)> = <y(a)> by
Theoremn 3.7. Thus £:(X,<y(7)>) — (Y,<¢(0)>) is open. Similarily, l'l:(\"<¢'(ﬂ)>) — (X,<¢(7)>) ix open
and { is a y-homeomorphism.

(2)  Assume f is a y-homcomorphism, then f(¥(A)) = $(f(A)) for every ACX by Theorems 3.4 and 3.5.
Thus f is a *-homeomorphism by Theorem 3.6, and the proof is complete.

The hypotheses of 3~ 7 and J~¢ are necessary in (2) of the above theorem as the following example shows.

EXAMPLE. Let X be the natural numbers. Denote by I, the initial st of natural numbers 1 to n; i.c.. Iy
= {1,2,...,n}. Let 7 denote the topology {#,X}U{I,;:n€X}. Let 3 denote the ideal of finite subsets of X, and
observe that $(A) = X for every ACX so that <¥(7)> is indiscrete. Also observe that 7* is the discrete
topology on X. Let Y denote the natural numbers and let o be the indiscrete topology on Y, and cousider the
identity function i: (X.r,Sf) — (Y,U,Sf). Clearly i is a ¥-homeomorphism since <¥(r)> and <(c)> arc both
indiscrete. However, o* is the co-finite topology and hence i is not a *_homeomorphism.

Note that in the above example we have ’f not compatible with 7 but we do have 3f~a' showing that
compatibility cannot be relaxed in the hypotheses of Theorem 3.8, (2), on either the domain or range. Also note
that the compatibility hypothesis $~o cannot be relaxed to the weaker conditon of B = o in the range.

The next example shows that the hypothesis f(3) = § in Theorem 3.8, (1), cannot be relaxed to f(3)C §.

EXAMPLE. Let X = {0, 1}, r = {0, X, {0}}, o = {0, X}, = {8}, § = {0, {1}} and :(X,7,9) — (Y,0.9)
be the identity function. Clearly, f(3)C34, I~7, and §~o. It is also easily seen that r*(3) = r = o*(3) and,
hence, f is a *-homeomorphism. However, <P(4,7)(1)> = 1#0 = <P(§,0)(a)> so that fis not a
-homeomorphism.

As an application of the Lifting Theorem, we will prove a theorem partially due to Crossley and
Hildebrand ([3] and [4]), as mentioned earlier. First we need a preliminary result.

THEOREM 3.9. Let f: (X,7) — (Y,0) be a semihomeomorphism, then f is a é-homeomorphism.

PROOF. Let f:(X,r) — (Y,0) be a semihomeomorphism. It suffices to show that f preserves regular open
sets. If VCX is regular open, V is semiclopen (i.e. both semiopen and semiclosed in the sensc that X-V is also
semiopen) so that f(V) is semiclopen. Then Int(f(V)) is regular open and CI(f(V)) = Cl(Int(f(V))) and so
CK{f(V))-Int(f(V)) is nowhere dense. Since semihomeomorphisms preserve nowhere dense sets [4], B-A is nowhere
dense with B = t'l(Cl(f(V))) and A = fl(lnt(f(V))). Thus, Int(B)-Cl(A) = @ showing that Int(B)CInt(CIl(A)).
But Int(f(V)) is semiclopen — A is semiclopen and Int(A) = Int(CI(A)). Therefore, Int(B)CInt(CI(A)) =
Int(A)CVCInt(B) and V = Int(A)CA. This yields f(V)Cf(A) = Int(f(V)) so that f(V) is open. Since f(V) is
also semiclosed, it must be regular open.

THEOREM 3.10. Let f:(X,7) — (Y,0) be a bijection. Then f is a semihomeomorphism iff f is an

a-homeomorphism.

PROOF. NECESSITY. Let N(7) and N (o) denote the ideals of nowhere dense sets with respect to 7 and
o, respectively. It is well known [21] that N(r)~7 and N(o)~0o. Also observe that <y¥(7)> = 75 and <¥(c)>
= og [7). Thus if f is a semi-homeomorphism, it follows from Theorem 3.9 that f is a ¥-homeomorphism, and it
follows from the Lifting Theorem that f is an a-homeomorphism.

SUFFICIENCY. Let f:(X,r) — (Y,0) be an a-homeomorphism. Then f*:(X,r%*) — (Y,r%) is a
homeomorphism where f*(x) = f(x) for each x€X. Since f* and (tﬁ')'1 preserve semiopen sets and the semiopen
subsets of (X,7¥) and (Y,0%) are precisely those of (X,r) and (Y,o) respectively, f and 1 also preserve
semiopen sets.

4. a-TOPOLOGICAL PROPERTIES

By Theorem 3.10 a property P is a semitopological property if and only if P is an a-topological property
and it is clear that the latter holds if and only if (X,7) and (X,7%) both have P whenever either does.
Andrijevic’ [1] has shown that for each ACX, Int(Cl(A))) = Int®(Cl%*(A)). It follows that (X,7) and (X,7%)
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share the same nowhere dense and meager sets and that Baireness is an a-topological property. Since (X,7) and
(X,7%) also share the same dense sets, resolvability and separability are also a-topological properties. In the
literature, many authors have isolated semitopological properties which in fact were semiregular properties and
hence by Corollary 2.5 are a-topological and hence semitopological. The examples below show that Bairencss,
resolvability, and separability are semitopological properties which are not semiregular.

EXAMPLE. The space X = {1,2,3,...} with the cofinite topology is not Baire since finite scts are nowhere
dense and X is meager. Yet the semiregularization of X is Baire since it is indiscrete.

EXAMPLE. Two-point Sierpinski space is not resolvable whereas its semiregularization is indiscrete and
thus resolvable.

EXAMPLE. The uncountable set of real numbers R with the cocountable topology is not separable, but its

indiscrete semiregularization is separable.
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