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ABSTRACT. An zdeal on a set X is a nonempty collection of subsets of X closed under the operatio,s of

(heredity) and finite unions (additivity). Given a topological space (X,v) an ideal on X and A C_X, /’(A)

defined as U{UEv:U-AE3}. A topology, denoted r*, finer than is generated by the basis {U-I:U(r, IE3},
,,d a topology, denoted <(r)>, coarser than r is generated by the basis (v) {(U):UEv}.

(X,r,3) denotes a topological space (X,r) with an ideal on X. A bijection f:(X,r,3) (Y,a,}) is cailc(i

*-homeomorphistn if f:(X,r*) (Y,a*) is a homeomorphism, and is called a -ho,conmri)lis if

f:(X,< (r)>) (Y,<(a)>) is a homeomorphism. Properties preserved by *-honmomorphisms arc stu(li,(I

well ms necessary and sufficient conditons for a -honeomorphism to be a *-homeomorphism. The sci-

homeomorphisms and semi-topological properties of Crossley and Hildebrand [Fund. Math., LXXIV (197’2), 2:3-

254] are shown to be special case.
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l. INTRODUCTION

Given a topological space (X,r), a nonempty collection of subsets on X is called au zdeal [l l] if tim

following hold:

I. IfA and BC_A, then B (heredity); and

II. IfA and BE, then AtJBtl (finite additivity).

An ideal is called a tr-deal if the following holds:

III. If {An:n=1,2,3 is a countable subcollection of 3, then O{hn:n=l,2,3 } (countable a(lditivity).

The notation (X,r,) denotes a nonempty set X, a topology r on X, and an ideal on X. Given I)oi,t

xX, we denote by r(x) the "r neighborhood system at x’" i.e., r(x) {Ur:xEU}.

Given a space (X,v,3) and a subset i of X, we denote by h*(3,v) {xX:Uti3 for every UCv(x)}, tl,c

local function of A wth respect to and [21]. When no ambiguity is present, we simply write A* for A*(3,’).

We let CI*(A) AtJA* which defines a Kuratowski closure operator for a topology v*(3) finer than (i.e.

vC_’*(3)), also denoted simply as v* when no ambiguity is present. A basis (3,v) for v* can be descril)c(!

follows [22]:

(3,v) {U-I:UGv, I3}. We will denote (l,v) simply by when no ambiguity is present.
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Given spaces (X,r,l), (Y,a,}), and a function f:(X,r,l) (Y,a,J), wc will call *-homcomovphsm

respect to r,t,a, and } if f:(X,r*) (Y,a*) is a homeomorphism, or siml)ly *-homeomorphtsm wlw,,

ambiguity is present. A topological property P will be called a *-topologtcal prol,crly wtlh respect to r,,tr, attl

] if it is preserved by any *-homeomorphism with respect to r,l,tr and ] or, followi,g ot,r convction, silly

*-topologtcal property when no ambiguity is present.

In this paper we study *-topological properties and show that the senai-topological properties of Crossh’y

and Hildebrand [4] are a special case.

Given a space (X,r,) and AC_X, we denote by Int(A) and CI(A) the interior and closure of A witl

to respectively, and by Int*(A) and CI*(A) the interior and closure of A with respect to r* rcslwctivcly. Wc

abbreviate "if and ouly if" by "iff", and use the symbol "---" to mean "implies" or "which itplies"

context. Of course the symbol --," is also used to denote functional correspondence; i.e. "f:A---B".

2. *-HOMEOMORPHISMS AND SEMIREGULAR PROPERTIES

Since *-topological properties are defined as those preserved by *-honaeonaorphisns, sufficient conditio,.- for

a function to be a *-homeomorplfism are a central issue.

DEFINITION. A space (X,r,3) is said to be 3-compact [14, 19] if for every open cover {Uc:aA} of X,

there exists a finite subcollection {Ui:i=l,2 n} such that X-U{Uai:i=l,2 n}l.
Observe that whenever is an ideal on X and f:X-,Y is a function, then f(3) {f(1):li} is a, ideal o, Y.

The following theorem gives sufficient conditions for a function to be a *-homeomorphism.

THEOREM 2.1. [6] Let f:(X,r,3)-,(Y,tr) be bijection with (X,r) l-compact and (Y,tr) llausdorff, if

f:(X,r*) (Y,tr) is continuous, then is a *-homeomorphism with respect to r,l,tr, and f(l).

The following theorem shows that :l-compactness is *-topological property with respect to and f(l).

THEOREM 2.2. Let f:(X,r,t) (Y,r,f(5)) be a *-homeomorphism. Then (X,r) is t-compact iff (Y,tr)is

f(3)-compact.

PROOF. NECESSITY. Assume (X,T) is :l-compact and let {Va:cA} be a a-open cover of Y. Then

{f’l(va):cA} is a r*-open cover of X. It is shown in [14] that (X,r) is 3-compact iff (X,r*)is
Thus there exists a finite subcollection {f’l(vcri):i=l,2,...,n such that X-Uf-I(voi Il. Co|lsequcntly,

Y-UVai f(I)f(l) and it is shown that (Y,tr) is f(l)-compact.

SUFFICIENCY. Assume (Y,r) is f(:l)-compact and let {Utr:aA} be a r-open cover of X. Then

{f(Uc):trA} ia a tr*-open cover of Y, and there exists finite subcollection {f(Uti):i=l,2 n} such that

Y-Uf(Utri) f(l)f(l). Then X-UUai Ifil, and the proof is complete.

Given a space (X,’), recall that a subset U of X is said to be regular open if U Int(Cl(U)). We denote

by RO(X,r) the collection of all regular open subsets of (X,r). The collection RO(X,r) is a basis for a topology

coarser than r, denoted rs, called the semtre9ulartzatton of r.

DEFINITION. Given a function f:(X,r) (Y,tr) from a space (X,r) to a space (Y,tr), is said to be a

6-homeomorphtsm [15] iff f:(X,rs) (Y,trs) is a homeomorphism. A topological property P will be called a

semtregular topologtcal propertl iff it is preserved by 6-homeomorphisms.

Another approach to semiregular topological properties is to define them to be topological properties shared

by topologies which have the same semiregularizations. This approach is easily seen to be equivalent to the

approach in this paper.

Given a space (X,r,), is said to be r-bounda [14] if rf’15 {g}.

THEOREM 2.3 [9, Theorem 6.4]. Let (X,r,l) be a space with rf3 {$}, then (r*)s.
Using the previous theorem, we can show the following.

THEOREM 2.4. Let f:(X,r,l) (Y,tr,]) be a *-homeomorphism with rf3l {t} and trf3] {t}. Then

any semi-regular property is a *-topological property.

PROOF. Let P be a semi-regular property and assume (X,r) is P. Then (X,rs) is P by definition

--,(X,(r*)s is P by Theorem 2.3 (X,r*) is P by definition (Y,*) is P since semi-regular properties are

topological (Y,(tr*)s) is P by definition (Y,trs) is P by Theorem 2.3 --,(Y,r)is P by definition.
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We denote by (r) tilt; ideal of ,owlcre dense sets with resl)cct to r. Give. spaces (X,r) atd

*-topological properties with resin’or to r.(r), , and (a) will be called ot-lopolo!ltcal propcrtt,

r*(Jq(r)) is commonly known as the -topology in the literature, and is denoted r [1fi,17].

Another approach to a-topological properti is to define them to be topological prolwrtics shared I). This approach is easily seen to be equivalent to the one taken in this paper.

As an easy corollary to the previous theorem, we obtain the following result of Jankovic’ a,d Rcill.v.

COROLLARY 2.5 [10] Semircgular properties are it-topological properties.

PROOF. Given a space (X,T), observe that (r)Clr {} and apply Theorem 2.4.

The list of semircgular properties which have been established in tile literature is qttilc cxlet...ic

includes: tlausdorff, Urysohn, almost regular, connected, cxtremally di.connccted, II-closed, S-clo...ed. Igl

conpact, and pseudocompact.

3. TIIE LIFTING THEOREM

Given a space (X,r), a subset A of X is said to be semi-open [12] if there exists a U(ir sucl

UC_AC_CI(U) or, equivalently, if AC_Ci(Int(A)). A function f:(X,r) (Y,a)is said to be 1,re-sem,-Ol, C,, [I] if

for every semi-open set A C_X, f(A) is semi-open in Y; and is said to be trresolute [4] if for every se,li-()t),’ set

BC_Y, fl(B) is semi-open in X. A bijection f:(X,r) (Y,a) is said to be sem,-bomeo,,,O,’l,h,s,,, [.1] if ,t i.-_

both I)rc-semi-open and irresolute. Properties preserved by semi-homeolnorphisms arc said to be semt-lol,oloqral

propevltes [4].
It can be shown that semi-topological properties are a-topological properties as a consequence of Theorem,

2.6 of [4] and Theorem 2 of [3]. We will establish this fact (specifically we will show that tile semi-topological

properties are precisely the c-topological properties) as a corollary to the Lifting Theoren proven i, this sectio,.

First. however we need several preliminary results.

In [13] Natkaniec defines an operator qa(%r):q(X) r, where (X,r,:t) is a space and (X)de,ores t.l,e

power set of X, as follows: for every AC_X, tb(l,r)(A) {x: there exists a Ur(x) such that U-A$} a,d

observes that !b($,r)(A) X-(X-A)*. We denote b(l,r) simply by b when no ambigt,ity is prese.t. ’l’he

operator b has been studied in [7] where the following is observed:

(A) U{Ur:U-AI}.
Note that (A) is open for every A_X.

THEOREM 3.1. Given a space (X,r,:I),

r*($) {ACX:AC:(A)}.
PROOF. Denote {AC_X:AC(A)} by a. First, we show that a is a topology. Observe that )C_(g) and

XC:_O(X) X. Now if A,B6a, ACIBC_:_(A)FI(B) (ACIB) AtqBqtr. If {Atr:a6A}C_cr, tt,e,,

AoC_O(UAa) for every a---. UAaC_O(UAa), and we have shown that a is a topology.

Now if Ur*, and xU, there exists a Vqr(x) and I1 such that xV-IC_:_U. Clearly V-UC_:_I so that

V-Ulby heredity, and hence x(U). Thus UC__(U) and we have shown r*C-_a.
Now let Aa. We have by definition that AC_(A) AC_X-(X-A)* (X-A)*C:_X-A X-A is r*-closed

and hence A fir*. Thus a r* and the proof is complete.

It is interesting to observe the the specific form of A*(Jq(r),r) CI(Int(CI(A))) for AC_X [2], and,
consequently, in this case we have (A) Int(Cl(Int(A))). It is known that A*((r),r) is regular closed

where .At(r) denotes the ideal of meager sets, and hence (A) is regular open in this case.

Given a space (X,r,:I), is said to be compattble with [17], denoted l.-r, if the following holds for every
AC_X: if for every xfiA there exists a Ufir(x) such that Uf3A, then A. Ideals having this property are

called "supercompact" in [21], "adherence ideals" in [22], and are said to have the "strong Banach’s localization
property" in [20]. For several characterizations of compatibility, see [9]. One significant consequence of :l~r is

that/ r* and all open sets in r* are of the simple form U-I where Ur, Iq. However, we can have
and not be compatible with r as the ideal of finite sets in an infinite discrete space shows.
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It is known that JC(r)...r, and .(r).--r (this is known as the Banach Category TI,eoren,) ([21], [lS]). it

is also known that if (X,r) is hereditarily Lindelbf and is a a-ideal then J.r [9].
A convenient characterization of l.r is the following.

T|IEOREM 3.2. [7] Let (X,r,l) be a space. Then l..-r iff (A)-AEI for every AC_X.

The following result is a straightforward consequence of the previous theorem.

THEOREM 3.3. Let (X,r,l)be a space with l.r. Then (A) U{(U):UEr, /,(U)-AI}.

PROOF. Denote LI{/,(U):Ur, (U)-AI} by el(A). Clearly, I(A)C_/,(A). Now let x’,(A)

i,nplies there exists UEr(x) such that U-A(EI. By Theorem 3.1, UC_/,(U), and ,(U)-AC_[,(U)-U]t[U-A]

(U)-AEI. Hence xt(A) and the proof is complete.

Observe that if f:X --.Y is an injection and ] is an ideal on Y, then f-l(]) {f-l(.1):.l}} is a, ideal o, X.

If (X,r,l) is a space and is a basis for a topology on X, then () is a basis for a topology o. X c(mrser

than r [7]. Denote by <()> the topology generated by ()= {(B):BE}.
Note that the previous theorem shows that (J,r) (J,<(J,r)(r)>), if l-r.

TIIEOREM 3.4. Let (X,r,l) and (Y,a,}) be spaces with f:(X,r) (Y,<(a)>) a conti,uous injcctio.,

}..-a, and f’l(})C_l. Then (f(A))C_f((A)) for every ACX.

PROOF. Let y(E(f(A)) where AC_X. Then by Theorem 3.3, there exists Va s,ch that y/,(V) and

(v)-f(A)e}. Now we have r((v))er(rl(y)) with f’I[(V)-f(A)]EI f’I((V))-AI rl(y)e(A)
yf((A)), and the proof is complete.

TIIEOREM 3.5. Let (X,r,l) and (Y,a,}) be spaces with f:(X,<b(r)>) (Y,a,}) an ol)en bijectio,, l--.r,

and f(l)C_}. Then f(b(A))C_g,(f(A)) for every AC_X.

PROOF. Let AC_X and let yf(b(A)). Then f(y)Ef(A) there exists Vqr such that r(y)q)(V)
(V)-A by Theorem 3.3. Now f(C(V))a(y) and f((V))-f(A) fI(V)-A]Ef()C_}. Thus yW(f(A)),

the proof is complete.

THEOREM 3.6. Let f:(X,r,J) (Y,a,}) be a bijection with f() }. Then the following are equivale, t:

(1) is a *-homeomorphism;

(2) f(A*) [f(A)]* for every AC_X; and

(3) f(b(A)) (f(A)) for every AC_X.

PROOF. (1) (2). Let ACX. Assume yf(A*). This implies f’l(y)A*, and hence there exists

Ur(t-l(y)) such that Uf’IA(5I. Consequently f(U)a*(y) nd f(U)f’lf(A)E} yf(A)*(],a*) f(A)*(},a).
Thus [f(A)]* C_f(A*).

Now assume y[f(A)]*. This implies there exists a Va(y) such that VCIf(A)] f’l(v)r*(f’l(y)) and

t-I(v)f’IAI f’l(y)A*(l,r*) A*(l,r) yf(A*). Ilence f(A*)C_[f(A)]* and (2) holds.

(2) (3). Let AC_X. Then f(b(A)) f[X-(X-A)*] Y-f(X-A)* Y-(Y-f(A))* k(f(A)).

(3) (1). Let UEr*. Then UC_(U) by Theorem 3.1 f(U)C-_f(b(U)) k(f(U)) f(U)a*,
hence f:(X,r*) (Y,a*) is open. Similarly, f’l:(y,a*) (X,r*) is open and is a *-homeomorphism.

DEFINITION. A function f:(X,r,l) (Y,a,}) will be called a b-homeomorph,sm w,th respect o r,

and } (simply a -homeomorphsm when no ambiguity is present) iff f:(X,<k(r)>) (Y,<k(a)>) is a

homeomorphism.

THEOREM 3.7. Let (X,r,J) be a space, then <,#(r*)> <(r)>.
PROOF. Note that for every Ur and for every I1, we have k(U-I) b(U). Consequently, b(/3)

b(r) and <b(fl)> <b(r)>. It follows directly from Theorem 11 of [7] that <b(fl)> <(r*)>, hence the

theorem is proved.

Our next theorem is the main theorem of this section.

THEOREM 3.8. (Lifting Theorem). Let f:(X,r,l) (Y,a,}) be a bijection with f(l) }.

(1) If is a *-homeomorphism, then is a b-homeomorphism.

(2) If l.-.r, }.--a, nnd is a b-homeomorphism, then is n *-homeomorphism.
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PROOF. (1) Assutne f:(X,r*) (Y,a*) is homeomorphism, and let /(U) I)e basic Ol)(,l! .,,et ill

<P(’)> with UEr. Then f(P(U)) (f(U))by Theorem 3.6 f(/,(U))E,(tr*), I>,t <g,(rr*)> </,(a)> I,y
Theorem 3.7. Thus f:(X,</,(r)>) (Y,<g,(tr)>)is open. Similarily, f’l:(Y,<,(cr)>} (X,<,(r)>)is
and is a b-hon]eomorpltisln.

(2) A.sume is a ,-lmnmomorphism, t.ien f((A)) t/,(f(A)) for every AC_X by ’[’heoretns 3.4 al 3.5.

Thus is a *-homeonmrphism I>y Tleorem 3.6, and the proof is complete.

The hypotheses of 1-,- and -a are necessary in (2) of the above theorem as the following cxatnple shows.

EXAMPLE. Let X be tim natural n,mbers. Denote by n the initial set. of natural numbers to ." i.e.,

{1,2 n}. Let denote the topology {,X}O{In:nX }. Let lf denote the ideal of fi,ite sul)set.s of X, al

observe that (A) X for every A C_X so that <b(’)> is indiscrete. Also observe that r* i tlw li.,,crcte

topology on X. Let Y denote the natural numbers and let tr be the indiscrete topology o, Y, a,d cosiler

identity function i" (X,r,3f) (Y,t,lf). Clearly is a b-homeomorphisn since <p(r)> and <(o’)> are

indiscrete. However, tr* is the co-finite topology and hence is not a -homeomorphsn.
Note that in the above example we have Jf not compatible with r but we do have 3f, showing that

COml)atibility cannot be relaxed in the hypotheses of Theorem 3.8, (2), on either the domain or range. Also

that the compatilility hypothesis -a cannot be relaxed to the weaker conditon of /= tr* in the ra,ge.

The next example sl]ows that tle hypothesis f(l) in Theorem 3.8, (1), cannot be relaxed to f(l)C_,.
EXAMPLE. Let X {0, 1}, r {0, X, {0}}, a {0, X}, 1= {O}, J {O, {1}} an,! f:(X,r,:l)

I)e the identity function. Clearly, f(l)C_J, l--.v, and J.--a. It is also easily seen that r*(l) a*(J) aml,

hence, is *-homeonmrphism. However, <(,r)(r)> v:/:a <(J,)(a)> so ti,at is not

’-honeomorphism.

As an application of the Lifting Theorem, we will prove a theorem partially due to Crossley and

Hildebrand ([3] and [4]), as mentioned earlier. First we need a preliminary result.

THEOREM 3.9. Let f: (X,’) (Y,tr) be a semihomeomorphism, then is a 6-homeomorphism.

PROOF. Let f:(X,’) (Y,tQ be a semihomeomorphism. It suffices to show that preserves regular open

.sets. If VC_X is regular open, V is semiclopen (i.e. both semiopen and semiclosed in the sense that X-V is also

semiopen) so that f(V) is semiclopen. Then lnt(f(V)) is regular open and CI(f(V)) Ci(Int(f(V))) a,d so

Cl(f(V))-Int(f(V)) is nowhere dense. Since semihomeomorphisms preserve nowhere dense sets [4], B-A is nowhere

dense with B trl(cl(f(V))) and A f’l(Int(f(V))). Thus, Int(B)-Cl(A) g showi,g that Int(B)C_Int(Cl(A)).
But Int(f(V))is semiclopen A is semiclopen and fat(A) Int(CI(A)). Therefore, Int(B)CInt(Cl(A))
Int(A)C_VC_Int(B) and V Int(A)C_A. This yields f(V)C_f(A) Int(f(V)) so that f(V) is open. Since f(V) is

also semiclosed, it must be regular open.

THEOREM 3.10. Let f:(X,v) (Y,tr) be a bijection. Then f is a semihomeomorphism iff is an

t-homeomorphism.

PROOF. NECESSITY. Let .N’(-) and .N’(o’) denote the ideals of nowhere dense sets with respect to " and

t, respectively. It is well known [21] that .N’(-)" and X()--.. Also observe that <,p(’)> ’s and <()>

as [7]. Thus if f is a semi-homeomorphism, it follows from Theorem 3.9 that is a -homeomorphism, and it

follows from the Lifting Theorem that is an ct-homeomorphism.

SUFFICIENCY. Let f:(X,’) (Y,tr) be an cr-homeomorphism. Then fa:(X,’a) (y,.tr) is a

homeomorphism where fa(x) f(x) for each xX. Since fa and (fa)-I preserve semiopen sets and the semiopen

subsets of (X,-a) and (Y,a) are precisely those of (X,’) and (Y,) respectively, and f-1 also preserve

semiopen sets.

4. a-TOPOLOGICAL PROPERTIES

By Theorem 3.10 a property P is a semitopological property if and only if P is an a-topological property

and it is clear that the latter holds if and only if (X,v) and (X,"a) both have P whenever either does.

Andrijevic’ [1] has shown that for each AC_X, Int(CI(A))) Inta(Cla(A)). It follows that (X,’) and (X,v)
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share the same nowhere dense and meager sets and that Baireness is an a-topological prol)erty. Since (X,r) and

(X,"c) also share the same dense sets, resolvability and separability are also o-tol)ological I)rOl)erties. lit tim

literature, many authors have isolated semitopological properties which in fact were semireg,lar prol)erties ald

hence by Corollary 2.5 are c-topological and hence semitopological. The examples below show that Baircncss,

resolvability, and separability" are semitopological properties which are not seniregular.

EXAMPLE. The space X {1,2,3 with the cofinite topology is not Baire since finite sets are ,owhere

dense and X is meager. Yet the semiregularization of X is Baire since it is indiscrete.

EXAMPLE. Two-point Sierpinski space is not resolvable whereas its semiregularization is i,di,r,t, altd

thus resolvable.

EXAMPLE. The uncountable set of real numbers R with the cocountable topology is not scparabh,, Il,t. its

indiscrete semiregularization is separable.
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