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ABSTRACT. In this paper we are concerned with inequalities involving certain sublincar functionals
on m, the space of real bounded sequences. Such inequalitics being analogues of Knopp's Core
thcorem.
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L. INTRODUCTION.

Let m be the lincar space of real bounded sequences with the usual supremum norm. We write

n
my={xe m:sup | ¥ xyl<eoo}
N k=0
Let A be the sequence of infinite matrices (Ai) = (apk(@)). Given a sequence x = (xy) we write
A= T an® an
X) = an(i) x
n k=0 nk k

if it exists for each n and i > (. We also write Ax for (Ai (x)). . The sequence x = (x)) is said
10 be summable to the value s by the method (A) if " Jin=0

A:,(x) —s  (n > o, uniformly in i) (1.2)

If (1.2) holds, then we write x—s(A).

If we define (2, (1) by

~_J Un+l | i<k<i+n
"nk")“{o , otherwise

then (A) reduces to the method f (Lorentz [1]). In the case
i+n
ani)=—= T ay
n+1 =i f

(-A) reduces to the almost summability method (King [2]). If A = A = (aj, ). then we get the asual
summability method (A).
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The method (A) is said to be conservative 1l x = s implies x = §'GA). If A) is conservative
and s = ¢, then (A) is called regular.

It is well known, (Sticglitz [3]), that (A) is regular if and only if the following conditions
hold:

Zla"k(i)|<oo ., (forall n, forall ). (1
k

and there exist an integer m such that

su Y| ayg (i) | <o I
iz().nPZm kl nk I b
lima, (i) =0, uniformly in i, (1.5
n
limXan ) =1, uniformlyini, (1o
n k

Throughout the paper we write

IIAII:supZ| ank(i)|<c~a (L.
n,t k

to mean that, there exists a constant M such that

PEMIOTESY (for all n, for all i) (1.5
k
and the scries

Eank(i) (1.,

convreges uniformly in i for each n.
If, for every bounded sequence x, x—s(A) then (A) is said to be a Schur method
Throughout the paper we consider only real matrices and real bounded sequences.

In this paper we arc concerned with inequalities involving certain sublinear functionals onm.
the space of real bounded scquences. Such inequalities being analogucs of Knopp's Core thearem
That theorem determines a class of regular matrices for which

limsup Ax < limsup x

for all x € m, see e.g Cooke [4], Maddox |5l, Simons [6]. This result has also been extended to
corcgular matrices by Rhoades [7}, Schaefer [8], and, Das [9].

Before stating the theorems to be proved, we introduce some further notation.

(x) = liminfx 5 L(x) = limsupx, , Ixll = sup I, |

[+ o | i+n
(x)= lm:lmf Slilpn . rEi Xp
L+ i+n
(x) = limsup sup—— ¥ x
n p ,pn +1 r=i r

W*(x) = inf L*(x +2)
zemg
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Itf, g arc any two of the above functionals, we shall write fA < gB 1o denote that, for every
bounded sequence x, the transforms Ax and Bx are defined and bounded and f(Ax) < g(Bx).

2.THE MAIN RESULTS.

We wiite, torx ¢ m,

Qa(x) = limsup sup X a (i) xi
n 1k

et qa(x) = liminf sup X a1 () x
n 1k
With this notation we have
THEOREM.1. Let ILANl < oo, Then
Qp <L 2.1

iband only if (AA) is regular and

Zl ag® l -1 (n—os , uniformly in i) 2.2)
k

PROOLFE. Necessity. Let x = (x) be a convergent sequence. Then [(x) = L(x) = lim x. By
(2.1), we have

L(x) - QA(-x) Q4 (x) < L(x).
Hence we get that QA (x) = g (x) = lim x. So (A) is regular.

Since (A) is regular, the requirement of Lemma 2, (Das [9]), is satisficd. Hence there
exists y € mosuch that llyll < 1 and

QAaly) = limsup sup ZI an () I .
n 1k

Hence, taking x = ¢ =(1,1,...), we have
1= qpe) € Iiminl’squ' ap® I
n 1k

< limsup sup El ap(d) ': Qay) SL(y) Syl <1
no i

which proves the necessity of (2.2)

Sutficiency. We define, for any real A, A = max (A,0), A~ = man (<1,0). Then ] =A% + A
and A =AY - A7 Henee

Sagaxp= ¥ ag@xp+ T lat@)xp- T {asu i) xy
N nki Xk k<m nk® X kZm( nk ) k kZm( nk ) k

So we have

Y a, (i) xp < ikl E @+ GSupxp) 3 h (x)|+l|v<ll T (b= a0
K nk' k “m nk o k=m nk' ( n 1 )

By hypothesis, we get that Q (x) < L(x).
REMARK. We could use Theorem 2, (Das [9)), to get the sufficiency.
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COROLILARY.2. We have onm,
[<l*x<L*<l..

PROOF. In theorem 1, it is enough to take

A (i) = I/m+l , i<k<i4n
Ak 0 , otherwise

We deduce at once from Corollary 2 that if a sequence x is convergent to s, then itis ahnost
convergent to s which is a well-known result.

We note that, by considering Theorem 1, one may get necessary and sufficient conditions for
L*A<Land LA <.

In the next thecorem we consider the inequality LA < 1L*,

THEOREM.3. LA <L*if and only if A is strongly regular and

%‘,Ianklal (n > o) (23

PROOF. Recall that a matrix A is called strongly regular if it maps all almost convergent
scquences into the convergent sequences and lim Ax = f - lim x.

We first prove the necessity. It is easy to sec that 0* <TA < LA <L If x is almost convergent
then f - lim x =[*(x) = L*(x). Hence, by the hypothesis, L(Ax) = L(Ax) = - lim x. S0 A
strongly regular. Using the fact that L* <. (see Corollary 2) and that LA < L*, we get that LA <1..
Now the necessity of (2.3) follows from Knopp's Core thcorem (sce, c.g. Maddox |S]).

We note in passing that a matrix A is strongly regular, Lorentz [ 1], if and only if it is regular
and that

Ehnk-an'k,,_]l—)() (n — o0) (2.1

Sufficiency. Given € > (), we can find a positive integer p such that for x € m and for all
k20,

—— ¥ x . <L*(x)+€ (2.5)
P+l "

(We fix p throughout the analysis).

As in Lorentz's proof (see [1]; Th. 7) one can show that

OZO oo k+p
g Xp= ¥ oagp——3 x
k=0 nk *k k=0 "kp+]r=k r
e ak+...+ank_
- Z _n_—’*p_.u .
k:p( p+1 nk
p-1
+ ¥ a,x
k=0 nk *k

p-1 ant+...tap
kT T nkeptl
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Since x € m, it follows from the regularity of A that the third and fourth sigmas in (2.6) tend
to sc10 ds n —» oo If we write

; = [#nk* - *ankp
Fpp=- X ( HETdnk Xk

k=p
then
l (- -]
| Popl< 557 kE-phnk+ *ap et P+ Dag gl
Ixi B2
s p+1 rf() k§ @y k-r- 2nK!

Iixll

P
E 2 ka a |
p+l =0 k=0 nk” “n,k+1

l/\

<5 >: u.nk Ay e (2.7)

Since A is strongly regular, (2.4) holds. Thus the expression in (2.7) tends to zero as n—oo.
Henee we find that

Xp+ ...+ X
l(Ax)<l|msup Z “nk( k pT—l—Hp)

Xy + +X
< lllnsup E( nk)( k_?)__r_]_ k+P)

. N xk+...+xk+p
- limsu Z(u )(—
pup v \¥nk p+i

By (2.5), we have

LIAX) < (LA(x) + ©) limsup X b 1+ lIxll limsup 2 ("'nk‘ - "nk)
n ok n ok

Using the regalarity of A and (2.3) we get that
L(Ax) SL¥(x) +€.
Suce ¢ is arbitrary, sufficiency follows.
THEOREM.4. L*A < L* if and only if A is F-regular and

i 1 i+n 5
hrrlnmi:pg lmr}ii agl=1 (2.8)

PROOEF. Recall that A is called F-regular if it maps F, the class of all almost convergent
sequences, into itself and f-lim Ax = f-lim x. Corollary to Theorem 4 in [ 10] gives the necessary and
sufticient conditions for A to be F-regular.

We now come to the proof of necessity.

One can easily show that
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£¥(x) <[*(Ax) S L*(Ax) < L*(x).

It x € F, then L*(x) = L*(x) = f - lim x. Hence [*(Ax) = L*(Ax) = - lim x. So A is
b regular.

To get the necessity of (2.8), we define (b (i) by

itn

L
bakd =17 Ei ark

Observe now that the conditions of Lemma 2, Das |9}, are satisfied. So we must have a
bounded sequence y such that lyll < 1 and

Qp(y) = limsup sup )k: b, 2Y9)
n i K

Hence by (2.9) and F-regularity of A, we get
1 i+n
|l <liminfsupX |l —— ¥ a |
n lp k n+ l l'=i l'k

1 i+n
Slimsupsup X b— X agy |
n P lpk n+l r=1 rk
] i+n
=limsupsup X (—— L ap )y <LAy) iyl <1
n i\ n+1 r=i

which proves (2.8).

Sulticiency. We first note that

i+n
* = lims ———
L*(Ax) lm:lsup slisp v rEiAr(x)

) i+n
= lm:lsup Slilp E (ii'fl r)___‘.iurk) Xk
I we set i+n
L1 T a
bnk(‘) “n+l r=i rk

then (2.6) with ag relaced by bpy (i) holds. Since xem and A is F-regular..Corollzuy to 'I‘I\Cf)f@l\\ 1
in [10] yields that the second and third sigmas with ap replaced l?y b, k(D). tend 1o 7ero as n—yee,
uniformly in i. On the other hand |anl, with a; replaced by bnk(i) is not greater than
p 1 i+n
5—’ Ixll E, bk® - by k1O = 5 it E ‘n_rl— rEi (- ap ka1 )

. P - e by (2.5).
Since A is F-regular, the last sigma tends to zero as n—ee, uniformly in i. Henee we have, by (2.5)

that
1 i+n X+ .-+ Xgyp
L*(Ax) Slim:up st;p% =T Tagll- ST 4

r=i
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1 i"'n
<(L*¥x)+¢) limsupsup X lo—— X ay |
) n P ilk n+1 - rk
itn itn
+ Il hm:up Slilp E‘, (ln—_;—l- r}_:iarkl ET r2=:i“'k )

Using (2.8) and the fact that A is F-regular, we get
L*(Ax) SL*(x) +€.
Since € is arbitrary, the required conclusion follows.

We now give another ingequality sharper than that of Theorem 4. (See Theorem 6 below). Ttis
also an analogue of Theorem 3 given by Devi [11]. We first need to prove a Lemma.

LEMMA 5. Let (B1) be a sequence of infinite matrices such that (1.3) and (1.5), with a,; (i)
replaced by by, (i), hold. Then, for every z € my, we have Bz=Dy,where

D = (dpi (D) = Ly - by k41D,
and

n
y=(@y= k);',lzk)e m.
If, further

im X W) =0, uniformly in i,
n k

theny = O(D) and z - O(B).

PROOF. The first assertion follows from Abel's partial summation. The second one is a
conscquence of the Result (3.2.1) given by Duran |10].

We arc now in a position to give the inequality mentioned above.

THEOREM.6. L*A < W* if and only if A is F-regular and (2.8) holds.

Before proving the theorem we note that W* is well-defined (sec Devi [11]).

We now come to the proof.

Suppose that L*A £ W*. Since W* < L*, it follows from Theorem 4 that A is F-regular and

that (2.8) holds.

Converscly supposc that A is F-regular and (2.8) holds. By Theorem 4, we get

u(x) = inf L¥(A(x+2)) < W*(x) (2.10)
7€ l“()
On the other hand
. ) 1 i+n
L*(A(x+2)) = Innnsup S‘;PE}TJT rEi ag (X +7g) (2.1

Now write
i+n

. 1
buk®D =2 Z ag
r=i
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Since A is F-regular, the requirement of Lemma 5 is satisfied. Henee we have that 7 ->xO(B) So.we
get

u(x) 2 inf {l.*(Ax)+[*(/\7,)}= LY (AX) (21)

7€my

Hence the required conclusion follows from (2.10) and (2.11).
The following theorem is a generalization of Result VII given by Kuttner and Maddox [ 12].

THEOREM.7. Let Al < e and 1B 1l < eo. Then Q4 (x) < qp(x) if only if (B) is a Schur
method and

E bk - b= 0 (n > oo, uniformly in i)

PROOF. Since the proof uses the technique that Kuttner and Maddox used, [12]. we omit the
details.

We conclude the paper with the following remark: Since no Schur method is regular, Theoiem
7 includes the result that Q4 (x) < qg(x) is impossible when (B) is a regular method. For example,

Qa(x) < (%) (for every xe m),

is impossible.
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