
Internat. J. Math. & Math. Sci.
VOL. 13 NO. 3 (1990) 535-544

535

SOME CONDITIONS FOR FINITENESS AND COMMUTATIVITY OF RINGS

HOWARD E. BELL and FRANCO GUERRIERO

Department of Mathematics
Brock University

St. Catharines, Ontario, Canada L2S 3AI

(Received March 21, 1989 and in revised form September 9, 1989)

ABSTRACT. We present several new sufficient conditions for a ring to be

finite; we give two conditions which for periodic rings R imply that R nst

be either finite or cumutative; and we study cumutativity in rings with

only finitely many non-central subrings.
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i. INIRC.

Over the years, several authors have given sufficient conditions for a

ring to be finite, these conditions typically involving restrictions on

subrings or zero divisors. More recently, Putcha and Yaqub [i provided a

sufficient condition for finiteness of a non-nil ring- specifically that

the set of non-nilpotent elements be finite; and Bell [2] presented
conditions implying that a ring is either cumutative or finite.

In this paper, we offer scme new conditions for a ring to be finite, and

continue the developrent of the cummtative-or-finite theme. Scme of our

results are extensions of known results; others, particularly those in the

final section, are of a quite different character.

In what follows, R is an associative ring with center C. The set of

nilpotent elements is denoted by N; and for a subset S of R, the subring

generated by S is denoted by <S>. The term zero divisor will mean a

one-sided zero divisor (i.e. not necessarily a two-sided zero divisor), and

0 will be considered a zero divisor. For x e R, the symbols Ar(X A (x),

and A(x) denote respectively the right, left, and two-sided annihilators of

x. Finally, the symbols Z, Zn, and C(p) denote respectively the ring of

integers, the ring of integers mod. n, and the Prefer p-group.
We shall frequently have use for direct-sun deccmpositions of R, both as

a ring and as an additive group. To make the distinction clear, we use the

symbol to denote a ring-theoretic direct sun and the symbol to denote an

additive-group direct sum.

2. A FINITENESS RESULT.

We begin by discussing rings in which certain subrings of zero divisors

are assuned to be finite.
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THC4 i. Let R be a ring with at least one non-nilpotent zero

divisor, and suppose that every proper non-nil subring of zero divisors is

finite. Then either (i) R is finite, or (ii) there exist primes p and q,

not necessarily distinct, and a positive integer k, such that R Zqk T,

where T is the zero ring on C(p ).

PROOF. Let x be a non-nilpotent zero divisor. If <x2> R, then <x2>
is finite and there exist distinct positive integers n and m, with n > m,

such that xn xm. A standard tation (see [3]) shows that e xm(n-m)

is a non-zero idempotent zero divisor. On the other hand, if <x2> R, then

x x2p(x), where p(X) 6 Z[X]- and xp(x) is a non-zero idempotent zero

divisor. In any case, R contains a non-zero idempotent zero divisor e,

which wit/xt loss we assune to be a left zero divisor.

Both of the subrings eR and Ar(e are proper and we have the group-

theoretic direct sn

R eR + Ar(e ).

If At (e) {0), then eR is a proper non-nil subring of zero divisors.

If At (e) {0), then eR ere and again er is a proper non-nil subring of

zero divisors. Therefore er is always finite. Moreover, if Ar (e) is

non-nil, then it is finite and so is R. Thus, assne that Ar(e is nil;

and consider <e, Ar(e) >, which is clearly a non-nil subring of R. If

y E <e, Ar(e)>, then y ne + x where n is an integer and x E Ar(e)- and

choosing m > 1 such that xm 0 xm-l, we see that yx"I 0, so that

<e, Ar(e)> is a non-nil subring of zero divisors. If it is a proper

subring, it is finite, in which case Ar(e is finite and R is finite.

Therefore we can suppose that <e, Ar (e) > R, and that Ar(e) is nil and

infinite. We now have the group-theoretic direct sn

Ar(e Ar(e)e + A(e). (2.1)

We claim that Ar(e)e is finite. Omsider S <e, Ar(e)e>, which is a

non-nil subring of zero divisors. Since <e> is a subring of the finite ring

eR, e nst have finite additive order. Moreover, e is a right identity

element for S, and hence (S,+) is a periodic abelian group of bounded order;

therefore, every subgroup of (S,+) is a direct sn of cyclic groups

[4, p. 44]. Let B {x a 6 A} be a basis for the group (Ar(e)e, +), and

hence {e} U B a basis for S. Choose x0 6 B, and define B
1
to be B\x0.

Then S
1

<e, BI> is a proper non-nil subring of zero divisors; therefore

B
1

is finite, B is finite, and Ar(e)e is finite. Since Ar(e was infinite

and nil, we know by (2.1) that A(e) is nil and infinite; consequently, A(e)
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contains an infinite zero ring T [5, Proposition 5].

Recall that R eR Ar(e)e A(e). If Ar(e)e {0}, then <e> T is a

proper infinite non-nil subring of zero divisors, contrary to our

hypothesis. Thus R eR A(e). Moreover eR <e> and A(e) T, for

otherwise <e> T violates our hypothesis again. It is now i,mediate that R

is a ring-theoretic direct man of <e> and A(e).

Our basic finiteness hypothesis on R forces every proper subring of A(e)

to be finite, and a result of Laffey [6] implies that A(e) ast be the zero

ring on C(p) for scme prime p. It is clear that <e> Zn for scme positive

integer n. If n jk, where j and k are relatively prime and greater than

I, then Zn Zj Zk, and Zk T violates our hypothesis on R. Therefore

<e> Z for scme prime q and positive integer k.

An imneiate consequence of Theorem 1 is the following:

CEROLLARY i. Let R have at least one non-nilpotent zero divisor, and

assne that every non-nil subring of zero divisors is finite. Then R is

finite.

3. FINITE CR ATIVE PHRICDIC RINGS.

We nw Dam our attention to periodic rings, and prove two results on

the t]lene of ccmatativity and finiteness. The first is motivated by Bell’s

result that a periodic ring with only a finite nurser of non-central zero

divisors ast be tative or finite 2, Theorem 3].
THECR4 2. A periodic ring R with only finitely many non-central

subrings of zero divisors is finite or ccmutative.

Before beginning the proof, we recall a useful fact about periodic

rings, namely that they are either nil or possess non-zero idempotents.

Indeed scme power of each element is idempotent 3], so that a periodic ring

having non-nilpotent zero divisors has a non-zero idempotent zero divisor.

There does not seem to be a short proof of Theorem 2, so we separate out
scme of the details in four initial lemnas. The first is a well-known

result of Herstein; the seccnd is due to Szele.

1 ([7], [8]). If R is a periodic ring all of whose nilpotent
elements are central, then R is ccmutative.

IZMMA 2 [9 ]. A ring R having both ascending chain condition and

descending chain condition on subrings ast be finite. In particular, any

ring with only a finite number of subrings is finite.

iZMMA 3. Let R be a ring with only finitely many non-central subrings

of zero divisors. Then any non-central nilpotent element has finite

additive order.

PROOF. Let u be a non-central nilpotent element of R with um 0 um-I

for scme positive integer m > i. Note that there is at most one prime p for

which pu is central, hence there exists a prime p such that for all primes

p _> P, pu C. There must exist distinct primes p and q such that p, q P
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and <pu> <qu>, and thus there exist integers nl, n
2

nk such that

2 kpu nlqu + n2u + + nku
Hence, tu n2u2 + + nkuk, where t p nlq 0. Cnsequently,

t2u n2u(tu + n3u2(tu + + nkuk-l(tu ). (3.1)

The right side of (3.1) is a polynunial in u, with each term of degree

at least three. By continuing in this manner, we see that tm-lu 0.

4. Let the periodic ring R have only finitely many non-central

subrings of zero divisors.

(i) If e is an idempotent and eR is not cummtative, then A(e) is

finite.

(ii) If R is the ring-theoretic direct sum of R
1
and R2, with R

1

non-ccmtative, then R
2

is finite.

(iii) If e is a non-central idempotent of R, then Ar(e)e is finite.

(iv) If e is a non-central idempotent of R such that eR is ccmatative

and Ar(e)e q C, then eR is finite.

PROOF. (i) Since eR is not cc,mutative, there exists a nilpotent

element u in eR which is not central in eR, hence not central in R. Let
uk 0 uk-l, for scme positive integer k > i. For any subring S of A(e),

<u,S > uk-I [0), hence <u,S> is a non-central subring of zero divisors,

and therefore there are only finitely many such subrings <u,S>. Suppose
that S1 and S

2
are subrings of A(e) such that <u, SI> <u, S2>. Then for

arbitrary sI in SI, we can write

r
sI p(u) + s

2 + qi(u)ti for some positive integer r,
i=l

and the t
i
are in S2, and p(X) and the qi(X) are in XZ[X].where s

2

Thus,
r

sI s
2 p(u) + qi(u)ti,

i=l

which is in A(e) N eR {0). It follows that S
1 c_ S2, and similarly one

shows that S
2 c_ S

1
Therefore, A(e) has only a finite number of subrings,

and hence is finite by lanna 2.

(ii) The argunet is similar to that of (i) and is unitted.

(iii) We may assune that Ar(e)e [0); moreover, Ar(e)e is a zero

ring. If S is any subring of Ar(e)e, then <e, S> Ar(e)e [0), so <e,S> is

a non-central subring of zero divisors. By hypothesis, there are only
finitely many such subrings; and furthermore, it is even easier than in

part (i) to show that different S give rise to different <e,S>. Thus Ar(e)e
has only finitely many subrings and must therefore be finite, again by lanna

2.
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(iv) Choose w e Ar (e)e\C. Since eR is cumutative, eR ere, so that

eRAr(e) (0); therefore, for any subring T of er, <w, T> w [0) and

<w, T> is non-central. As usual, this implies there are only finitely many

such T; and er is finite.

F THECPaM 2. In view of lanna 1 we may assune that R contains a

non-central nilpotent element x. Then <x> is a non-central sabring of zero

divisors, and it is finite by Lemna 3. Since R has only finitely many

non-central subrings of zero divisors, we see that if each non-central zero

divisor is nilpotent, then the set of non-central zero divisors is finite

and by Bell’s result [2] R is finite or cumutative.

Henceforth we may assune that R contains a non-central, non-nilpotent

zero divisor. Therefore, R contains a non-zero ide,10otent zero divisor e,

which we assume without loss to be a left zero divisor.

Let n(R) denote the nunber of proper non-central subrings of zero

divisors. Assune now that the conclusion is false and that R is a

counterexemple with n(R) minimal emong ccunterexamples.

If e e C, then R is the ring-theoretic direct sun of er and A(e), with

one of these non-cummtative. Since both eR and A(e) are proper subrings of

zero divisors, we have that n(eR), n(A(e)) < n(R). Whichever of these is

non-cumutative must be finite; and by Lemna 4 (ii), the other is finite as

well.

Therefore e C, and we assune first that A(e) (0). Then eR and Re

are both proper non-central subrings of zero divisors; moreover, if both

were crmmatative, we would have ex exe xe for all x e R, contrary to the

fact that e C. Thus we may assune that eR is not cumtative and

n(eR) < n(R), so the minimality of n(R) implies that eR is finite. By Lemna

4 (i) and (iii), both Ar(e)e and A(e) are finite, hence

R eR + Ar(e)e + A(e) is also finite.

Finally we assune that e C and A(e) (0). Then R eR Ar(e)e, with

the latter being finite by Lemna 4 (iii). If Ar(e)e C_ C, then

Ar(e)e [0), contradicting cur assunption that A(e) (0). Thus, assune

that Ar(e)e C, in which case n(eR) < n(R) again. Therefore, eR is again

finite or cumutative; and in view of Lenna 4 (iv), eR is finite in any
case, shwing that no counterexample can exist.

THRCREM 3. Let R be a periodic ring. If every proper non-central

sabring of zero divisors is finite, then R is finite or cumutative.. Suppose first that all elements of R are zero divisors, in which

case every proper non-central subring of R is finite. If R is not
cummtative and x E RkC, then <x,C> is proper and non-central, hence finite;

therefore, all cumutative subrings of R are finite, and R is finite by a

theorem of Laffey I0 ].
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Henceforth we may assume that R contains regular elements. If all zero

divisors are nilpotent, the fact that R N guarantees that R has non-zero

idempotents, all of which are regular. Therefore R contains a unique

non-zero idempotent, which must be I- and it follows that every element of

R is either nilpotent or invertible, a sufficient condition for N to be an

ideal [ii]. If N c_ C, then R is ccmatative by Lema i. Otherwise, N is a

proper non-central subring, hence is finite; therefore R has only a finite

number of zero divisors and is finite by an old theorem of Ganesan ([12],

[13]).
We can now assize that R contains a non-nilpotent zero divisor and hence

a non-zero idempotent zero divisor e, which we assue to be a left zero

divisor.

As usual we write R eR Ar(e ). If A(e) {0}, then eR consists of

zero divisors" and if A(e) [0}, then eR eRe and eRAr(e) [0). In any

case eR and Ar(e are both proper subrings of zero divisors. If both are

central, then R is ccnutative; otherwise, at least one is finite by

hypothesis, and arguments similar to those used in proving Lemna 4 establish

finiteness of the other as well.

4. RINGS WITH FINITELY MANY NN-CNTRAL SUBRINGS.

Theorem 2 of this paper suggests that we should exanine arbitrary rings

with only a finite nunber of non-central subrings. We now present scme

results on such rings, and note that the first is a refinement of a theorem

of Bell 14 ], which asserts that a ring with fewer than three proper
subrings is ccmutative.

THCR4 4. If R has fewer than four non-central subrings, then R is

cumtative.

PROOF. Let R be a non-cumtative ring. Then there exist x, y E R\C

such that [x,y] # 0. Note that <x,C> and <y,C> are cumutative and hence

proper; moreover <x,C> <y,C>, for otherwise we would have [x,y] 0.

Since (R,+) cannot be the union of two proper subgroups, there exists

z <x,C> U <y,C>. Clearly <z,C> is a proper subring different frcm both

<x,C> and <y,C>; hence, we have now exhibited four non-central subrings,

including R itself.

As the following example demonstrates, Theorem 4 is best possible. Let

(R,+) {0,a,b,c} be the Klein four-group and define nitiplication by

0x x0 cx 0, ax bx x for all x E R. Clearly R is not cumutative

and C {0}; moreover, R has precisely four non-central subrings, <a>, <b>,

<c>, and of course, R itself.

THCRM 5. If R has no non-zero nilpotent elements and only finitely

many non-central subrings, then R is cumtative.

We shall make use of the following lesma.
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5. Let R be a ring wit/xt non-zero divisors of zero. If y E R

and there exist relatively prime integers m, n such that E C and C,

then y C.

PRCDF. Let y be a non-zero element of R that satisfies ur hypothesis.

Assne without loss that n > m, and write n mq + r with 0 < r < m and q a

positive integer. Observe that for all x in R,

0
r +  rl.

Since q e C, it follows imnediately that q[x, yr] 0 [x, yr].
Therefore yr e C; and repeating the above argnent for m qlr + rI and

0 < rI < r, we get that yrl E C. Continuing with the Euclidean algorit/n

until the remainder is i, we have that y C.

PROOF OF THEC 5. We first note that R is a subdirect product of

rings with no non-zero divisors of zero [15], hence we may asstm that R is

also without non-zero divisors of zero. Assne that there exists y R\C.

By Lesna 5, there exists an infinite sequence of integers
ninI < n

2 < n3 < denoted by A, such that y C for all ni in A. Since

n.
the set [< y 1 > nie A contains only finitely many distinct subrings,

there exist n and m in A, with n < m, such that <yn> <. Hence

p(), where p(X) e XZ[X]. Using the fact that R has no non-zero

divisors of zero, we see that y y2q(y) for some q(X) E Z[X]. Thus, for

each y R\C there exists q(X) Z[X] such that y y2q(y) is central- and

since central elements obviously have the same property, R is ccmmtative by
a well- theorem of Hersteln 16 ].

THEC4 6. Let R be a ring with (R,+) torsion-free. If R has only

finitely many non-central subrings, then R is cc,ntative.

PRO(. Assuming that there exists a non-central element y, we again

claim that there exists an infinite increasing sequence A of positive

integers such that C for all n A. To see this, we need only suppose
that our claim is false and hence there exists a positive integer K such

that for all integers k _> K, ? C. An art similar to that used in

proving lanwa 3 implies the existence of a non-zero integer t, and a

polyncmial g(X) 6 z[x] such that tK-ly g(y). Therefore tK-ly C, which

contradicts our asstmption that y C.

Oonsideration of (<y n e A) again implies the existence of integers

n and m in A, with n < m, and a polyncmial p(X) Z[X], such that

(y). Therefore -l(y n+Ip(y)) 0, and a standard computation

(cf. [5], proof of lanna 3) shows that y n+ip(y) is in N. But lanna 3

and the torsion-freeness of (R,+) imply that N c_ C, and once again R is

ccnmtative by Herstein’s result.
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. Although a proof has eluded us thus far, we suspect that any

ring with only a finite number of non-central subrings is finite or

ccmutative.

5. RINGS WITH A FINITE MAXIMAL SUBRING.

T. J. Laffey has asked whether a ring with a finite maximal subring must

be finite. The general question, which appears to be difficult, remains

unanswered; bat in interesting special cases, we have shown that the answer

is affirmative.

7. let R have a finite maximal subring M and at most finitely

many subrings of infinite index. Then R is finite.

PROOF. let I be any ideal not contained in M. Then I + M is a subring

properly containing M; and since M is maximal, I + M R. Thus we have the

ring-theoretic iscmorphism

R/I (I+M)/I M/(M f I),

and hence the index of I is finite and bounded by IM
Note that R is finitely-generated, since for any x M, R <x,M>. A

theorem of Lewin [17, Theorem 1 ], which asserts that a finitely-generated

ring has only finitely many subrings of index a given integer, implies that

R can have only finitely many ideals not contained in M. Since M is finite,

we conclude that R contains only finitely many ideals.

Oonsider next a subring S of finite index. Each such S contains an

ideal of finite index 17 ]- and since there are only finitely many such

ideals, the index of S is bounded by the maximum of the set of indices of

the ideals. Using Theorem i of [17] again, we have that R has only finitely

many subrings of finite index. Hence R has only finitely many subrings, and

is therefore finite.

We conclude with

8. If R is a ccmutative ring with a finite maximal subring S,

then R is finite.

PROOF. If S is an ideal, then R/S has no proper subrings; it is

therefore finite, implying that R is also.

let us asstne that R is a counterexample to the theorem with SI minimal

mong counterexnples. Consider the Jacobson radical J(S), which is

nilpotent, and J(S)R + S, which is a subring containing S. Maximality of S

implies that either J(S)R + S S or J(S)R + S R. If we assume the

latter, then

R (J(S)R + S) c_ (J(S)(J(S)R + S) + S) c_ J(S) + S.

Repetition of this argument shows that R C_ J(S)nR + S for all positive

integers n, and the nilpotency of J(S) then implies the ridiculous assertion

that R c_ S. Therefore J(S)R + S S, implying that J(S)R is an ideal of S.

Since R is ccmmtative, J(S)R is nilpotent, which then implies that
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J(S)R c_ J(S) and hence J(S) is an ideal of R.

Note that R/J(S) has a finite maximal subring S/J(S). If

IS/J(S)I < ISl, then, (by the minimality of ISl), R/J(S) is finite and R is

also. Therefore we must have that J(S) {0}, so S is non-nil and contains

a non-zero idempotent e.

Assume temporarily that e is a zero divisor in R, and suppose also that

eR S. Then R eR + S and hence

R/eR (eR + S)/ea S/(S n eR). (5.1)

is finite. Since R eR @ A(e), (5. i) implies that A(e) is finite.

Oonsidering eS as a subring of eR, we observe that eS eR or eS is a

maximal subring of eR; and since we have assumed that eR S, the latter

nst hold. If eSl < IS I, then again by the minimality of IS l, eR is finite

and so is R. Thus asstrne that eS S, in which case the fact that

S eS @ (A(e) N S) implies that A(e) N S {0}. Because A(e) {0} and S

is a maximal subring, we have that R S + A(e), which implies that R is

finite.

Therefore we may assne that eR c_ S implying, of course, that eR is

finite. Since eR is an ideal of R, cr initial statement implies that eR

mast be properly contained in S. Then S/eR is a maximal subring of R/eR

with S/eR < Sl. Minimality of Sl implies that R/eR is finite and so is

R.

It remains only to consider the case that all idempotents in S are

regular in R. Since J(S) (0}, S is a direct product of finite fields.

therefore, the regularity of idempotents forces S to be a finite field. For

any x e RkS, we have <x,S> R (p(x):p(X) e SIX]}; hence, if x is

algebraic over S, it is clear that R is finite. Cn the other hand, if x is

not algebraic over S, then R is iscmorphic to SIX], which does not contain a

finite maximal subring. In any event, we have contradicted ur assumption

that R was a ccunterexample.
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