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Abstract: This paper deals vith the Fourier coefficients of a function of class Lp. We give ,c(’c.,,sa)

sufficient condition for function to be of class Lp for p greater than one.
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1. INTRODUCTION.

A function f(x) is said to belong to the class L(p,a) if "ilf(x)lp (sin x)ap dx < o [I].
0

If f(x)EL(p,(), then we define Ilfllp,a={ If(x)l
p

(sin x)
ap

dx} p.
0

Hardy [2] gave the following theorem concerning the Fourier coeffEcients of a function belonging to L I, class.

THEOREM 1.__1: Let al, a2 be Fourier cosine coefficients of a function of class LP, p_> l, and sn=- ak.

Sl s2 s3 k=l
Then

2 3
are also Fourier coefficients of a function of class LP.

The converse of Theorem 1.1 is not necessarily true. But Siddiqui [3] proved the following theorem.

THEOREM 1.--2: Let f(x).E an cos nx with anl0. Then a necessary and sufficient condition that
n----1

an cos nx be the Fourier series of f(x)ELP is that An cos nx be the Fourier series of a function

n=l n=l

belonging to LP class, where p> and An=__ ak.
k=l

2. MAIN RESULT. The object of this paper is to weaken the hypothesis that an0 of Theorem 1.2 to a

condition that n-/an should be monotonic for some non-negative integer and also for weighted LP sl)accs. In

fact we have the following theorem.

THEOREM 2.__1: Let {an} be a positive null sequence such that n-an is monotonically decreasing for some

non-negative integer . Suppose f(x),,E an cos nx. Then necessary and sufficient condition

n=l
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n=l n=l

n
.series of a function belonging to I,(p,a) class, where l_<p<c,-l<ap<p-1 and An=Z ak.

k=l

We shall require the following Lemmas for the proof of our theorem.

LEMMA 2.2 [1]: Let f(x) an cos nx where the an are positive and tend to zero and n n
n=

monotonically decreasing for some non-negative integer ft. Then a necessary and sufficient conditiot

that f(x)EL(p,a) is that Z nP-aP-2anP<cx wimre l_<p<oo and -l<ap<p-1.
n=l

LEMMA 2.3: If n-Ban for some non-negative integer/3 is monotonically decreasing, then

n

fiZ ak
An k=

n

is also monotonically decreasing.

Proof: Let 3=0, then we have to show that
n+l

An 1 ak _> An+l n_.Zak
k=l

n+l
(n+l) ak >_ n Zak

k--1 k=l

n n
n ak + Zak -> n Zak + nan+l,
k=l k=l k=l

n an+ _< ak.
k=l

Since

it follows that

an+ _< a1,

an+ -< a2’

an+ < an,

n an+ _< al+a2+ +an,

n an+ _< )_ k-
k=l
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An >_ An+ 1.
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Now let fl_>l. Let Cn=n-flan, then

An= k=l -(l+fl) ak
nfl k--1

fl) ll a-(1+ " k
p k=n kA,=l k--

and

=n
-(1+) kflCk

k=l

An+ =(n+ 1)-(1+/3) nl kflCk
k=l

=(n+l)-(l+fl){ kflCk + (n+l)flCn+l
k=l

=(n+l)-(l+fl) kflCk + (n+l)-lCn+l
k:l

Now

An An+ n-(l+fl) kflCk (n+1)-(1+fl) kflCk (n+1)-ICn+l
k:1 k=1

={n’(l+fl) (n+l)-(1+fl)} kflCk (n+1)-ICn+l
k=l

therefore

(n+l)(An_An+l) (n+l){n
-(l+fl) (n+l)-(l+fl)} x kflCk Cn+

k=l

> (n/l)(n
-(l+fl) (n+l)-(l+fl)}Cn kfl Cn+

k=l

> (n+l){n
-(l+fl) (n+l)’(l+fl)}Cn+l kfl On+

k=l

Cn+l[(n+l){n-(1+fl)- (n+1)-(1+fl)} kfl 11
k=1

Cn+l{(n+1)0n }, where

(n+l)On=(n+l){n
-(1+) (n+l)-(l+fl)} k fl

k:l

{(n+l)n"(l+fl) (n+l)(n+l)’(l+fl)}’ kfl
k=l

{(n+l)n-(l+fl) (n+l)-fl} kfl

k=l
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{(n+l)n-ln-/3 n-/3(1+)-/3}0 k/3
k--I

n-/3{(l+) (1+)-/3} k/3
k--1

.-/((+)- (-)+ (-) +/- .) x ’2 n2 k

Now by the following formula in [4],

n/3+l n_: /3 "n/3-1 /3(/3-1)(/3-2)n/3-3+
k=

+ + 12 720

we have

(n+l)On + .15{(/3+1)., /3(/3+1)}n-1/3 + O(n-2)

(3/3+)__!
1+. +O(n-2)

> for large n.

LEMMA 2.4: Let {an} be a positive sequence which tends to zero. Let {n-/3an} be monotonically ,lccreasing for

some non-negative integer B. Then the convergence of Z nP-CrP’2AnP implies the convergence of the series

O0 11= 1,

Z nP-P-Zanp
n=l

where

Proof." Since {n’/3an} is a monotonically decreasing sequence, then it follows that

__l
n

An - ak k-/3akk/3
k=l k=l

E n-flan’ kfl =Kan, for some K
k=l
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that

1) 2an < nl)<ool)-(i I)_K nll-ii-2A
n=l k=l

and hence the result follows.

Proo.___.f of the Theorem 2.1" ]’lie necessary part follows from Theorem B as a particular case.

Sumciency. Since {An} is a positive null sequence and due to Lemma 2..3,

decreasing for some non-negative integer fl, it follows from Lemma 2.2 that if mncos ilx i,-, the
ll

of a function F(x)L(p,o), then nVOV2Anp<.
111

Applying Lemma 2.4, we have nP-aP-2anP<c.
n=l

llence by Lemma 2.1, f(x)eL(p,a), and consequently ancos nx is the Fourier series of f(x).
11=
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