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ABSTRACT. Let F {A(1): < i < t, t 2}, be a finite collection of finite,

palrwlse disjoint subsets of Z+. Let SC R\{0} and A Z+ be finite sets. Denote

by S
A {i=isi:a A, S

i
S, the s i are not ncesarily dlstinct }. For S and F as

above we say that S is F-free if for every A(i), A(J) F, i J, SA(1)(% S
A(j) .

We prove that for S and F as above, S contains an F-free subset Q such that

This result generalizes earlier results of Erdos [3] and Alon and Klen [2],

on s-free subsets. Several possible extensions are also discussed.

INTRODUCTION.

A set S of integers is called sum-fre__._ee if (S+S)(S }, i.e. if there are not

(not necessarily distinct), a,b,c S such that: a + b c. There is a considerable

aount of results concerning sum-free subsets, not only within the integers, but also

in the context of abeltan groups. The nuntal survey by Wallis and Stree= [1]

reconded for that purpose. Recently Alon and Klelen [2] proved (ang ny o=her

interesting results) the following theorem.

THEOM A:[2]. Any finite set B of nonzero reals contains a sum-free subse= A of

This is a sligh lmprovene of an old resul of Erdos [3]. Here we consider the

re general problem neloned in he aract. Le us firs[ recall the

forulaeion of he generaltzed sum-ftee subse problem.

Let F {A(I): < i < t, t 2}, be a flnie collecilon of finite, pairse

disjoint, subsets of Z+. t Z+ and S R {0} finite ses. note

by S
A {iisi: a A, s

i
S, the si are not necessarily dlselnct }. For S and F as

defined above e say that S is F-free If or eve A(1), A(J) F, i J,

SA(1) SA(1) . Clearly for F {{I}, {2}} hls is Just the case of s-free

subsets investigated In [2] and [3].

Erdos as ell as Alon and K1eien gave a probabiliseic proof of Theorem A. e

shall give a proo of eorem A in he case of Integers, avoiding the probabillsIc

tools and usi a double-counting Instead. Our In goal however Is eo generallze
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both the content and the proof teclantque of Theorem A to an arbltrary collection F as

explained above. We shall combine the probabilistic ideas of [2] together with an

observation on non-intersecting subintervals of the unit interval [0, I). We prove

the following:

THEOREM I.I. Let S be a finite subset of R\{0}. Let F {A(i): i t, t 2}
+

be a finite scollectton of finlte, pairwlse disjoint, subsets of Z then S contains

an F-free subset Q of cardlna[tty IQI a c(F)ISI, when c(F)[s a positive constant

depending on F only.

2. PROOFS OF THE THEOREMS.

We first give a non-probabilistic proof of Theorem A in the case of integers.

PROOF OF THEOREM A. Let B {bl, b2,...,bn} be a set of integers. Let p 2k + 2

be a prime number such that: p > 2 max __Ibil’ and put C {k+l, k+2 ,...,2k+l}.

Observe that C is a sum-free subslegf the cyclic group Zp, and that ICI/p-I)
(k+l)l(3k+l) > 1/3.

For any x, x p-l, define di(x) d by d _= xb (rood p) 0 d
i

< p.
i

Clearly, for every fixed i, ( i n, as x ranges over all numbers 1,2..,p-l, d i

ranges over all nonzero elements of Z
P

Now we use double-counting instead of the probablistlc argument. For every

i n, let t(bi) _l{x: d
i

xb
i

e C} I. For every x, x < p, letbi

il I r(x) but by ther(x) l{i: d xb
i

e C} I. By double-counting we have t(bi) x
choice of P, t(bi) k + for ( i n. Hence for some x p-l,

r(x) )n(k+l)/(p-l) n(k+l)/(3k+l) > n/3. Consequently there is a subset A of B, of

IAI > IBI/3 such that xa(mod p)e C, for all a e A. This subset A iscardinality

sum-free, since if a + b c, for some, a,b,c e A then xa + xb xc(mod p), which is

impossible because C is sum-free in Z Q.E.D.
P

The proof of Theorem A rests on the basic idea whlch is to find a "large" sum-

free subinterval of Zp and to map the set, under consideration, onto Zp such that a

large portion of it, is mapped onto the sum-free subinterval. We shall apply such an

idea in the following proof of Theorem I.

PROOF OF THEOREM I. Let A(i) e F be a finite set of positive integers and order

them in an ascending order, such that A(i) {a(i,l) < a(i,2) <...< a(i,ni) }. Denote

by 6 6(F)= rain {a(i,l): i (n}. Consider the sequence B(F) of the largest

elements of each set Ai, namely B(F) {a(i,ni): (i (n}. Denote by LI(F) resp.

L2(F) the largest resp. the second largest element of BF). Finally let r r(F)

max {x E R: L2(F) < x LI(F) x/L2(F) rain {a(k,l)/a(i,j): i k, a(k,l) >,a(i,j)ll.
We are going to show that c(F), the constant in Theorem I, is at least

c(F) ) (r L2(F))/(rLI(F) 6L2(F)) > O. First we show that the interval

[a, 8)C[O,I] is F-free with respect to addition modulo-l, with the choice

:a L2(F)/(rLI(F) L2(F)) and B r/(rLl(F) L2(F)). From the definitions

rLI(F) L2(F) > O, hence 0 < a < B. Moreover, since L2(F) r(L I(F) I),

we infer that B < I, hence it follows that [a,B)C[O,l]. Now suppose there are
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a(i,j) A(i) and a(k,l) A(k), such that a(k,l) > a(t,j) and

a(k,l)[a,)(mod l)Ctati,j)[a,B)(mod I)= O. (c[a,B) =: [ca,cB)). Observe that

because of the specific choice of the parameters a, 8 and since 6LI(F) + da as

can be seen by a direct verification, we actually must have an ntersectton even

without (mud I) consideration, namely we must have a(k,l) [a, 8)at,j)[a, 8) O.

Hence it follows that a(i,j) > a(k,l)a, which [n turn implies that r/L(F) /a >
a(k,l)/a(i,j) > l, a contradiction to he choice of r=r(F). Hence with respect to

addition modulo-l, Is,8) is indeed F-free. Now le min __si" We choose,

randomly, a real number x according to a uniform dlstrlbut on the interval I,

defined by I [I/, n(F)/], when (F) is a large constant depends only on F, and

compute the numbers d (x) :dI (xs I (mud ). Observe that for fixed

i, ’ i n, every subinterval of I of length I]et is mapped onto [0,I), hence for

large O(F) the expected number of df-s that longs to [a,) is re than (B-a) (n-l)

and hence there Is an x and a subset Q of at least (8-a)n members of S such that (xq)

(d I) Is, B)for each q Q. But n we are done, because [a,S)is F-free

respect to addition dulo and also 8-a (r-L2(F))/(rLI(F) L2(F)) as needed.

a denstration of the parater Involved let A(1) {I,4,7}, A(2)={2,5,8},

A(3) {3,6,9} and F {A(1), A(2), A(3)). en 6(F)= I, B(F)= 7,8,9},

LI(F) 9, L2(F)= 8, r(F) 9 and c(F) (9-8)/(99 1"8) 1/73. Moreover the

interval [8/73, 9/73) is F-free with respect to addttlon dulo-l.

3. EXTENSIONS AND VARIATIONS.

I. A set of linear equations over Z.

A natural question that can be asked now is, what can we say, for example, about

the following set of linear equations:

5a + 3b + 2c 9x

3a + 3b + 3c + d 8x + y

4a + 2b + 2c + 2d 6x + 2y + z

One can easily check that these equations are special cases of the F-free problem.

Indeed we only have to define A(1)={10}, A(2)-{9}, and F {A(1),A(2)}. Any

F-free subset contains no solution of any of the above equations. This observation

can be set in a general form as follows.
u m

z..oez 3.. Let

equatiOnSn with POSmitive integer coefficients. Suppose further that for any u and

v,
i=

a(l,u) , I=EI b(i,v), then any set S of nonzero reals contains a subset Q, of

of

the coefficients of the equations, and such that no linear equation of the prescribed

set is solvable within Q. n
PROOF. Observe that we only have to define A(1)’{iI’,i a(i,J), J n},

m
A(2) {i=l b(i,j), J n}, and F {A(1), A(2)}. By Theorem we are done,

because any F-free subset of S contains no solution of any of the equations.

2. A set of linear equations over Q.

Lets’ have a look at the following linear equations over Q:
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5a/3 + 2b/9 2x/7 + 5y/14

a/3 + b/3 + c/3 x/2 + y/2.

There is an essential difference between them. The first one can be transformed into

the equation

210a + 28b 36x + 45y.

Clearly 210 + 28 238 81 36 + 45. Hence Theorem 3.1 caa be applied here

with A {238}, and A2 {81}. The second equation can be transformed into 2a + 2b

+ 2c 3x + 3y, but now 2 + 2 + 2 6 3 + 3, and we can’t use Theorem or Theorem

3.1, because the condition A(1)OA(2) is violated. However from the examples

given above it is clear that Theorem 3.1 remains valid in the more general situation

of positive rational coefficients, and that a generalization of Theorem to the case

of rationals is possible. We omit the quite obvious details.

3. There is still the question of what can be said, if anything, in the case when or
some A(i), A(j) E F, A(1)(IA(j) , e.g a + b 2c or a + 2b + 3c + 4d I0 e etc.

We hope to comment about such problems in Wal[is, Street, and Wal[Is [4] under the

frame of Independent sets of hypergraphs. One can see that even the simplest

case a -: b 2c, is closely related to the well known Theorem of Szemeredi on

arthmetlc progressions. So it is unreasonable to expect that results llke Theorem

and Theorem 3.1 can hold in thls case.

4. TWO OPEN PROBLEMS.

I. The most interesting open problem is that of determining the best possible

constant in Theorem I, with respect to a given set F, and in particular for the case

of sum-free sets to prove or disprove that I/3 is the best possible constant.

2. Another interesting problem is to obtain a constant better than I/3 in the

case when S is a set of squares of nonzero integers. Here we hve to avoid a2 + b2

c2. Clearly we can’t hope for a constant better than 2/3 because we can take a large

set consisting of arbitrarily large pythagorlan’s triples.
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