Internat. J. Math. & Math. Sci. 751
VOL. 13 NO. 4 (1990) 751-754

GENERALIZED SUM-FREE SUBSETS

YAIR CARO

School of Education
University of Haifa - Oranim
Tivon - 36910
Israel

(Received November 21, 1989)

ABSTRACT. Let F = {A(1): 1 <1 <t, t »2}, be a finite collection of finite,
pairwise disjoint subsets of zt.  Let sc R\{0} and A C z* be finite sets. Denote
by SA = {izlsizae A, S:l € S, the s; are not ncesarily distinct }. For S and F as
above we say that S is F-free if for every A(i), A(j) ¢ F, 1 # ], SA(i)n SA(j) = l}.

We prove that for S and F as above, S contains an F-free subset Q such that

IQI > c(F)'Sl, when c(F) is a positive constant depending only on F.

This result generalizes earlier results of Erdos [3] and Alon and Kleitman [21,

on sum—free subsets. Several possible extensions are also discussed.

1. INTRODUCTION.

A set S of integers is called sum-free if (S+S)NS = @, i.e. if there are not
(not necessarily distinct), a,b,c € S such that: a + b = c. There is a considerable
amount of results concerning sum-free subsets, not only within the integers, but also
in the context of abelian groups. The monumental survey by Wallis and Street [1] is
recommended for that purpose. Recently Alon and Kleitman [2] proved (among many other
interesting results) the following theorem.

THEOREM A:[2]. Any finite set B of nonzero reals contains a sum-free subset A of
cardinality |A| > ’B|/3.

This is a slight improvement of an old result of Erdos [3]. Here we consider the
more general problem mentioned in the abstract. Let us first recall the exact
formulation of the generalized sum—free subset problem.
Let F= {A(1): 1 <1 <¢t, t >2}, be a finite collectifon of finite, pairwise
disjoint, subsets of zt, Let A € z¥ andsc R\ {0} be finite sets. Denote
by SA = {121191: a €A, s, € S, the 8; are not necessarily distinct }. For S and F as
defined above we say that S is F-free if for every A(i), A(j) ¢ F, 1 # ],

S“i)f\ SA(” = f. Clearly for F = {{1}, {2}} this is just the case of sum-free
subsets investigated in [2] and [3].

Erdos as well as Alon and Kleitman gave a probabilistic proof of Theorem A. We
shall give a proof of Theorem A in the case of integers, avoiding the probabilistic

tools and using a double-counting instead. Our main goal however is to generalize
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both the zontent and the proof technique of Theorem A to an arbitrary collection F as
explained above. We shall combine the probabilistic ideas of [2] together with an
observation on non-intersecting subintervals of the unit interval [0, 1). We prove
the following:

THEOREM 1.1. Let S be a finite subset of RV{0}. Let F = {A(i): 1 < i <¢t, t > 2}
be a finite scollection of finite, pairwise disjoint, subsets of Z+, then S contalns
an F-free subset Q of cardinality 'Q' > c(F)‘S‘, when c(F) is a positive constant

depending on F only.

2. PROOFS OF THE THEOREMS.

We first give a non-probabilistic proof of Theorem A in the case of integers.

PROOF OF THEOREM A. Let B = {bl’ bZ""’bn} be a set of integers. Let p = 2k + 2
be a prime number such that: p > 2 max |b1l, and put C = {k+l, k+2 ,...,2k+1}.
Observe that C is a sum-free subdeb “8f cthe cyclic group 2 and that IC'/(p-l) =

(k+1)/(3k+1) > 1/3.

P’

For any x, 1 < x < p-1, define di(x) = di by d, = xb1 (mod p), O <d, < p.

i i
Clearly, for every fixed i, 1 < i < n, as x ranges over all numbers 1,2..,p-1, di

ranges over all nonzero elements of ZP.

Now we use double-counting instead of the probablistic argument. For every
by, 1 <1 <n, let t(bi) = I{x: di = xbi € C}'. For every x, 1 < x < p, let
r(x) = '{i: dl = xbi
choice of P, t(bi) =k + 1 for 1 <i < n. Hence for some 1 < x < p-1,
r(x) > n(k+1)/(p-1) = n(k+1)/(3k+l) > n/3. Consequently there is a subset A of B, of
cardinality 'A' > |B|/3 such that xa(mod p) € C, for all a € A. This subset A is

sum-free, since if a + b = ¢, for some, a,b,c € A then xa + xb = xc(mod p), which is

€ C}I. By double-counting we have 1glt(bi) = % r(x), but by the

impossible because C is sum-free in Zp‘ Q.E.D.

The proof of Theorem A rests on the basic idea which is to find a "large" sum-
free subinterval of Zp and to map the set, under consideration, onto Zp such that a
large portion of it, is mapped onto the sum—-free subinterval. We shall apply such an
idea in the following proof of Theorem 1.

PROOF OF THEOREM 1. 1Let A(i) € F be a finite set of positive integers and order
them in an ascending order, such that A(i) = {a(i,1) < a(i,2) <...< a(i,ni) }. Denote
by § = 8(F) = min {a(i,1): 1 < i < n}. Consider the sequence B(F) of the largest
elements of each set A;, namely B(F) = {a(i,ni): 1 <i < n}. Denote by Ll(F) resp.
L2(F) the largest resp. the second largest element of B(F). Finally let r = r(F) =
max {x € R: LZ(F) < x < Ll(F), x/Lz(F) < min {a(k,l)/a(i,j): i * k, a(k,1)>~a(i,j)}}-

We are going to show that c(F), the constant in Theorem l, is at least
c(F) > (r - LZ(F))/(rLl(F) - 6L2(F)) > 0. First we show that the interval
[a,B)C [0,1] is F-free with respect to addition modulo-1, with the choice
ta = LZ(F)/(rLl(F) - 6L2(F)), and B = r/(rLl(F) - GLZ(F)). From the definitions
tLl(F) - GLZ(F) > 0, hence 0 < a < B. Moreover, since GLZ(F) < r(LI(F) - 1),
we infer that B < 1, hence it follows that [a,B)C [0,1]. Now suppose there are
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a(i,j) € A(i) and a(k,1) € A(k), such that a(k,l) > a(i,j) and

a(k,1)[a,B)(mod 1)Na(i,j)[a,B)(mod 1) = 0. (cl[a,B) =: [ca,cB)). Observe that
because of the specific cholce of the parameters a, B and since BLI(F) =1+ 8aas
can be seen by a direct verification, we actually must have an intersection even
without (mod 1) consideration, namely we must have a(k,l) [a,B)Na(i,j)[a,B) = O.
Hence it follows that a(i,j)B > a(k,l)a, which Ln turn implies that r/L_ (F) = B/a >
a(k,1)/a(i,j) > 1, a contradiction to the choice of r=r(F). Hence ;tth respect to
addition modulo-1, [a,B) is indeed F-free. Now 1let y = min ‘si|. We choose,
randomly, a real number x according to a uniform distributié%qkn the interval I,
defined by I = [1/y, n6(F)/u]l, when 6(F) is a large constant depends only on F, and
compute the numbers di(x) = :d1 = (xsi) (mod 1). Observe that for fixed
i, 1 <1 < n, every subinterval of I of length llsii is mapped onto [0,1), hence for
large 6(F) the expected number of di-s that belongs to [a,B) is more than (B-a) (n-1)
and hence there is an x and a subset Q of at least (B-a)n members of S such that (xq)
(mod 1) € [a,B) for each q € Q. But now we are done, because [a,B) is F-free with
respect to addition modulo 1 and also B-a = (r-Lz(F))/(rLl(F) - GLZ(F)) as needed.

As a demonstration of the parameter involved let A(l) = (1,4,7}, A(2)={2,5,8},
A(3) = {3,6,9} and F = {A(1), A(2), A(3)). Then &(F) =1, B(F) = 7,8,9},
LI(F) =9, LZ(F) =8, r(F) = 9 and c(F) = (9-8)/(9*%9 - 1*8) = 1/73. Moreover the
interval [8/73, 9/73) is F-free with respect to addition modulo-1l.

3. EXTENSIONS AND VARIATIONS.

1. A set of linear equations over Z.

A natural question that can be asked now is, what can we say, for example, about
the following set of linear equations:
5a + 3b + 2¢ = 9%
32+ 3b+3c+d=8x+y
4a + 2b + 2c + 2d = 6x + 2y + 2z
One can easily check that these equations are special cases of the F-free problem.
Indeed we only have to define A(1)={10}, A(2)={9}, and F = {A(1),A(2)}. Any
F-free subset contains no solution of any of the above equations. This observation
can be set in a general ﬁ?tm as follows.
THEOREM 3.1. Let iE{a(i,j)xl - iE{ b(i,j)yi, 1 <j <n, be a set of n linear
equasions with pogitive integer coefficients. Suppose further that for any u and
v

v, EP a(i,u) # 121

cardinality |Q' > c'S., when c¢ 1is a positive constant depending only on the sums of

b(i,v), then any set S of nonzero reals contains a subset Q, of

the coefficients of the equations, and such that no linear equation of the prescribed
set is solvable within Q. n

PROOF, Observe that we only have to define A(l)-{i_z‘i a,i), 1 <j <nal,
A(2) = {121 b(i,j), 1 < j < n}, and F = {A(1), A(2)}. By Theorem 1 we are done,
because any F-free subset of S contains no solution of any of the equationms.

2. A set of linear equations over Q.

Lets' have a look at the following linear equations over Q:
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5a/3 + 2b/9 = 2x/7 + S5y/l4

a/3 + b/3 + /3 = x/2 +y/2.
There is an essential difference between them. The first one can be transformed into
the equation

210a + 28b = 36x + 45y.

Clearly 210 + 28 = 238 # 81 = 36 + 45. Hence Theorem 3.1 can be applied here
with Al = {238}, and Ay = {81}. The second equation can be transformed into 2a + 2b
+ 2c = 3x + 3y, but now 2 + 2 + 2 = 6 = 3 + 3, and we can't use Theorem 1 or Theorenm
3.1, because the condition A(1) MA(2) = P is violated. However from the examples
given above it is clear that Theorem 3.1 remains valid in the more general situation
of positive rational coefficients, and that a generalization of Theorem 1 to the case
of rationals is possible. We omit the quite obvious details.
3. There is still the question of what can be said, if anything, in the case when for
some A(i), A(j) ¢ F, A(1)OA(j) # P, e.g a + b = 2c or a + 2b + 3c + 4d = 10 e etc.
We hope to comment about such problems in Wallis, Street, and Wallis [4] under the
frame of independent sets of hypergraphs. One can see that even the simplest
case a + b = 2c, is closely related to the well known Theorem of Szemeredi on
arithmetic progressions. So it is unreasonable to expect that results like Theorem 1

and Theorem 3.1 can hold in this case.

4. TWO OPEN PROBLEMS.

1. The most interesting open problem is that of determining the best possible
constant in Theorem 1, with respect to a given set F, and in particular for the case
of sum-free sets to prove or disprove that 1/3 is the best possible constant.

2. Another Interesting problem is to obtain a constant better than 1/3 in the
case when S is a set of squares of nonzero integers. Here we hve to avoid a? + b2 =
2. Clearly we can't hope for a constant better than 2/3 because we can take a large

set consisting of arbitrarily large pythagorian's triples.
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