
Internat. J. Math. & Math. Scl.
VOL. 13 NO. 4 (1990) 677-686

677

ABELIAN THEOREM FOR THE STIELTJES TRANSFORM OF DISTRIBUTIONS

BOGOLJUB STANKOVI(

Institute of Mathematics
University of Novi Sad

Yugoslavia

(Received February 13, 1989 and in revised form March 15, 1989)

ABSTRACT. First, a definition is given of the Stieltjes transform of distributions

which contains some well-known. Then, a structural theorem for distributions having S-

-asymptotic is proved. This makes possible to prove two theorems of the Abelian type

valued for Stieltjes transforms of distributions given in different ways.
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I. INTRODUCTION.

It is possible to define the Stieltjes transform of distributions in various ways.

One of them is the so-called direct approach in which we construct a basic space A D D
of smooth functions to which the set {(s + t) -r-l, Im s 0, r >- 0} belongs. Then, we

define a transform for T, belonging to the dual space A’, by the expresion < T(t),
(s + t) -r-I >. In this paper we shall deal only with such definitions. If the construc-

ted space A’ is such that T A’ has the support belonging to [0,), we have the clas-

sical Stieltjes transform, extended to generalized functions in one dimension.

We shall give a definition of the Stieltjes transform in meny-dimensional case not

only to have a new generalisation of the Stieltjes transform, but to prove Abellan type

theorems valued for the Stieltjes transforms given in different ways.

2. NOTATIONS AND DEFINITIONS.

N is the set of natural numbers, N
O

N U {0}. If a,b n z Cn, z (X + iyIna
...,x + iyn) and e (I I), then: (a.b) i__’laibi;" z II(x + iYi) Izal ir[__l Ixi +n n 2 i=l
+ iy

i
ai z

e
1-I z a| (a-a); a> 0 means a 0 for all i n.
i:l i i

F will be a convex acute cone with vertex at zero; B(0,r) the closed,ball with the

center at zero and with radius r > 0; S(0,1) the unit sphere, all in Rn. is the inte-

rior of F.
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> h2 in F if h h2 + r. For a com-DEFINITION I. Let h h2
e F. We say that h

plex valued function G(h), h F, lim G(h) A e C, h F, h if for every > 0

there exists h(e) F such that IG(h) A < e when h Z h(e) in F.

If F , we can prove the following Lemma:

U AB(a,r). IfLEMMA i. Suppose F # and B(a,r) c We denote by F
>0

lim G(h) A, then lim G(x+h) A for every x Rn.
hF,h heFl,h

PROOF. By Definition for every e > 0 there exists h(e) such that IG(h)-A[ < ,
h h(e) + F. Now x h(e) + 80a e B(B0a,80r if 80 .> l(x h(e)U/r, 80 depends on e.

Hence x h(e) + Boa e F c F. Since F is a convex cone, x h/(e) + Boa + F c F + F

c F and x + 80a + F c h(e) + F. It follows that IG(x+h) A < e for h Boa + FI.-
REMARK. In Lemma we can choose the ball B(a,r) in such a way that the distance

between B(a,r) and any coordinate axis Xi, i n, in Rn is positive, d(B(a,r),Xi)
>- c, > 0. Then fail r .> e > 0, i n. We denote by r2 u )B(a,r), for such

constructed ball B(a,r). If u e h0 + F 2
for a h0

e F2, then u 0a + 0z + ha + ly,

where z,y e B(0,r); 0’ > 0. It is easy to see that [uil >. ( + 10)(lail r) -> ( +
+ 0)= and for any M 0 we can find h0 with the property lUll >. M. Hence, if h ,
h e F2, then lhil -, i n.

By P we denote the set of all the real and positive functions c. Notations for the

spaces of distributions are as in the book of L. Schwartz [1].

DEFINITION 2. A distribution T D’ has the S-asymptotic in r related to the

function c e p and with the limit U 9’, if the following limit exists

lim < T(x+h)/c(h),#(x) > < U,@ >, e D. (2.1)
her,h

Then we write T(x+h) c(h).U(x), h r and we say that T has the S-asymptotic in 9’

(Pilipovid and Stankovid [2] and Stankovid [3]).
We shall use the same definition for a T B’ 9’(L’) and @ e 9(L) stressing

that T has the S-asymptotic in B’.
If the interior of the cone r is not empty, , then we can give the analytical

expression of the limit distribution U:

Suppose that T 9’ and has the S-asymptotic with the limit U # 0. Then there exists

a 0 9 such that < U,@0 > # 0. For this 0 and t a n, using Lenna I, we have

c(h+t) T(x+(h+t)) T((x+t)+h)
lim < ,@0(x) > lim < ,#0(x) >. (2.2)

hr2,h c(h) c(h+t) hr2,h c(h)

From trhis relation it follows the existence of the following limit

lim c(h+t)/c(h) d(t), t e Rn
her2,h

and that U satisfies the equation

(2.3)

d(t) < U,@0 > < U(x+t),o(X) >, d(O) I, t e Rn. (2.4)

Since U, as a distribution, has all the derivatives, it follows from relation

(2.4) that:

[d(t+At1) d(t)] < U,$0 > < U(x+t+At I) U(x+t),$o(X) >
[d(At I) -d(0)]d(t) < U,0

>, d(0)= I.

(2.s)
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It is now easy to prove that (Pilipovid and Stankovid [2]):

d(t) exp(a’t) and U(t) C exp(a-t), t n. (2.6)

3. STIELTJES TRANSFORM OF DISTRIBUTIONS

In the following we shall use the well-known function q e C’, w 0 (Vladimirov
E

[4]):

ng(x) f qw(x-t)dt, x e Rn (3.1)

where B(0,2)

Dm-n exp w2_xq(x) D ql(t)dt 1. (3.2)
0 IxH w Rn

The function q has the properties: 0 < q(x) < x e Rn n(x) 1,x B(0,);

qw(x) 0, Ilxll > 3; IDkq(x)l Ck-(k’e) x Rn The constants C
k do not depend on

DEFINITION 3. The Stieltjes transform of a distribution T V’ (S -transform) is
P

defined by the limit

lim < T(x),n (x)(s+x) -(p+e) > S (T)(s) s e (C\)n (3.3)
W P

if it exists for a p e n By e we denoted e (I, ,i)

REMARK. s can belong to a larger set, as well. This depends on the support of T.

So S (6)(s) s-[p+e), s 0.
P
We shall give a relation between Definition 3 of the Stieltjes transform and de-

finitions of some other authors frequently used in many papers. All of them are in one

dimension. Let us start with the classical definition.

If T is defined by the function f, suppf c [0,(R)), Definition 3 gives the clas-

sical Stieltjes transform, if it exists. Let s e (\ (-(R),0]), then

S (f)(s) lim f f(t)q(t)(s+t)-(0+l)dt lim f f(t)(s+t)-(P+l)dt + (3.4)
0 3 0

+ lim f f(t)nw(t)(s+t)-(P+l)dt.
We have only to prove that:

lim i f(t)q(t)(s+t) "(p+l)dt 0, s e (C \(-(R),0]) (3.5)

when the classical Stieltjes transform exists.

Since for w .< x < 3
2

q(x) f q(x-t)dt f ql(Y)dy; (3.6)
-z (x-Z)l

the function Bw(x) is positive and monotone decreasing in this interval. By the mean

value theorem, there exists a , 0 < < 2 such that

q(t)Re[f(t)(s+t)-(P+l)]dt q() f Re[f(t)(s+t)-(P+l)]dt. (3.7)

The last integral tends to zero when , because we suposed that the Stieltjes trans-

form of function f exists. We have the same situation with the imaginary part of the
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integral from relation (3.5).

Lavoine and Misra [5-6] defined the Stieltjes transform of distributions belonging

to a subset J’(r),Rer>-1of’,which is used in many papers. A distribution T belongs to

J’(r) if and only if there exist m N such that T= DmG, where G is a locally inte-

grable function having a support in [0,) and G(x) 0(xr+m-=), = 0. The Stieltjes

transform of T ’(r) is, by these two authors:

S (T) (r+l)...(r+m)JG(t)(s+t)-r-m-ldt s C\(-,0]. (3.8)
r

0

For a T ’(r), r p, relation (3.3) gives

S (T)(s) lim < T(x),q(x)(s+x) -(p+I) >
Pm

I ,m. f G(x) m_k (x)dx(-i)m ()(P+I)...(P+m) lira (s+x)P+k+l D q
k=l 0

We have two types of integrals

G(x) G(x) Dm_k
(s+x)P+m+l q(x)dx and (s+x)Yk+1 q(x)dx, m-k >-i.

0

(3.9)

(3.10)

For the first one we proceed as in the case of the classical Stieltjes integral.

The second one tends to zero when . We have only to start from
3

S(x) )m-k m-kD(s+x)P+m+l (s+x (x)dx (3.11)

and to use the integration by parts.

In the next cases the authors followed the construction of the Stieltjes transform

as we mentioned in the Introduction. The basic spaces A are topological vector spaces of

complex valued smooth functions The space A contains P and the topology of is strong-

er then that induced on it by A. The retstriction T of an element @ A’ to is in ’.

For a p 0 and s belonging to a subset of C, (s+t) -(p+e) is in A. The Stieltjes trans-

form of a A’ is defined by < #(t),(s+t) -(p+e) >.

In all the cases, we shall list, the family {(s+t)-(P+e)q(t), > 0} converges in

A to (s+t) -(p+e) when Then for a A’ and T ’ we have:

S (T)(s) lim < #(x),q(x) (s+x)-’p+e’- > < -T(x),(s+x) -(p+e) > (3.12)
P

By Zemanian [7] it is p 0 and the basic space A is ]c,d { CO,’)’Pc,d,k(O)
,d(t)l (tD)k/,(t)l < k N where Xc,d(t) t

c < t < (R); Xc d(t) t dO<t<(R)sup Xc o
0 < t < and c < I/2, d > -1/2. The topology of ]c,d is defined by the seminorms Pc,d,k,
keno

By Pandey [8] the basic space A is S { C0 _)’Yk() sup (l+xa)l(xD)k(x))l’"
is defined by the seminorms k’ k N The function< , k No} The topology in S 0

(s+t) -p+I)’" S for = <_- p+l but the family {(s+t)-(P+l)(t) > 0} tends to (s+t)-+I’

in S for = < p+l when (R).

=Bremermann [9] introduced the basic space 0 { (R),(k)(t) 0(t) k N }.
c 0

The toplogy of 0 is that in.duced by . He treated the case 0, Im s 0 and = >. -I.

For the Stieltjes transform of distributions in many dimensional case see also [I0].
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4. DISTRIBUTIONS HAVING THE S-ASYMPTOTIC

We shall prove a structural theorem for the distributions having the S-asymptotic

in a cone r with the nonempty interior, .
THEOREM i. Suppose TO

e B’ and T0(x+h) l’U(x), h e F in ’, then

a) U C;

b) TO AikF. where F are continuous functions belonging to L’;
i=O z’ i

c) For every 0 i & 2 functions F.(x+h) converge uniformly to a constant when x
1

belongs to a compact set K and h e F, h =;

d) T0 has the S-asymptotic in B’ as well, related to c and with the limit U

=C in the coneF.

PROOF. a) By relation (2.6) U has to be a constant because c I.

b) From the fact TO ’ it follows that (T0*) L" for every (Schwartz [I],

II, p. 57) and the set of distributions Q {Th
E T0(x+h), h n} is weakly bounded and

bounded in 9’.

In addition to Q, we shall construct an other bounded set of distributions. We de-

note by S {@ ,|L & i}. We have seen that for a fixed 9, (T0) i’. Now,

for every S:

< T0*, >I < T0*, >I II(T0*)(t)(t)dtl (4.1)

R

ITo*IL. IIIIL.
Hence the set of regular distributions, defined by the set of continuous functions

H {U 5 T0*, S} is weakly bounded and bounded in 9’.

A set W’ e 9’ is bounded if and only if for every = e the set of functions {T*,

T W’} is bounded on every compact set M belonging to n (Schwartz [I], II, p. 50).

Hence {T*=, T e W’} defines a bounded set of regular distributions. In such a way

{Th*, Th Q} and {U@*, U# H} give two bounded sets of regular distributions. Now,

for these two sets we can repeat twice a part of the proof of Theorem XXII from Schvartz

[I], II, p. 51.

We denote by an open neighbourhood of zero in Rn which is relatively compact in

Rn, cl K a compact set. Then, by the mentioned part of the proof by Schwartz [i],

there exist m Z 0 and m2 0, such that the mappings (=,) U#*(=*8) or (=,8) Th*
*(*8)are equicontinuous and map ..-olx or 2x2 into i; B is the ball B(0,r)where

r is a positive number. Hence, for every x B and h e n the function (Th*=*8)(x)
(T0**8)(x+h) is continous.

Let Z(0,p) be a ball in L, then there exists a neighbourhood VI(mI,EIKI) in 9;
such that U#*(=*8) Z(0,) for e,8 l(ml,el,Kl), U H and a neighbourhood

2(m2,e2,K2) c 2, such that Th*(=*8) 2(0,p) for ,8 2(m2,e2,K2), Th Q. Let

K0 K K2, e
0 min(el,e2) and m max(ml,m2). We shall now use relation (VI, 6; 23)

from Schwartz [I], II:

T
0

2k*(E,E,T) 2.ak*(E**T) + (**T), (4.2)

where E is a solution of the iterated Laplace equation; kE 6; , , supp and

supp belonging to K0 K K2. We have only to choose the number k large enough so
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m
that NE D. Now, we can take: F

2 E*yE*T0; F yE*,T
0 and F0 **T0. All of

’,K0), ’ > 0these functions are of the from: F T0*i*i; =i,i V(m,g
0 0

We have to prove that F.I have the properties given in Theorem I. For =i,i c

’,K0) and SV(m,
0

< (T0*=i*Si), >1 I[(T0*$)*(gi*i)](0)l (/0)2 M (4.3)

Now let 0 be any element from i I, then /HHLI S and I< (T0*(=i*Si)), >l -<
-< MNH/I which proves that T0*(=i*Si) belong to i’. Since F

i T0*(=i*i), =i,8i
(m,e0’,K0), Fi are continuous and belong to i’.

c)We shall continue with investigations of the properties of F.. By the properties
1

of the convolution we have that Fi(x+h) Fi*-h T0*(i*i)*-h Th*(i*i) for i’
m

8 i D, where T-h is the translation operator.

We have proved that the mappings (,) Th*=*8, T
h Q, are equicontinuous and

m m
map xD into i. D is a dense subset od m, m >. 0. We can construct a subset of

cl K, which is dense in . Since Th*(*) C** for * DxD, then

converges to C*=i*8i, as well (Schwartz ], II, p. 53).

d) there remains to prove the last part of Theorem I. For D(L I) and T ’,
n6ting that F. i’, we have:

,< T0(x+h),B(x)>,=<[! ,Fi(x+h)Aik(x),dx < I Mif ,Aik(x),dx, (4.4)

i=00 n

where M.1 suplFi(x)l’ x n. Hence the set {T0(x+h), h n}, is weakly bounded in

B’. Since D is dense in D(i), by the Banach-Steinhaus theorem the limit:

lim < T0(x+h),(x) >, D(L),
hF,h

exists, as well, and equals < C,B >.

(4.5)

5. ABELIAN THEOREMS FOR THE STIELTJES TRANSFORM

THEOREM 2. Suppose that T D’, the cone F is with the nonempty interior and

i) T(x+h) c(h)-U(x), h r in D’;
ii) For a r > 0 and so (C\)n the distribution T(x)/(s0+x) r

belongs to. ’;

iii) For the same r and So, c(h)/(s0+x+h)r converges to C # 0 when h F, h

and x belongs to any compact set in n.
Then T has the S -transform for all > r, S (T)(s) < T(x)/(s0+x) r

(s0+x)r/(s+x)+e > and

lim Sp(T)(s-x(h)__ 0, p > r. (5.1)
heF ,h

PROOF. From supposition iii) it follows that the limit distribution U C. Namely,

for a y n, x belonging to a compact set in n and so (C\)n from the relation:

c(h+y) c(h+y) (s0+x+h)r (s0+x+h+y)r
(5.2)

c(h) (s0+x+h+y)r c(h) (s0+x+h)r
and from the Lemma with the Remark after Lemma I, we have lim c(h+y)/ c(h) I.

Now, relation (2.6) gives U C.
h,h
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By Theorem X from [I], I, p. 72 (see also Pilipovid and Stankovid [2]), for a

it follows the existence of the limit:

T(x+h) c(h)
lim < T(x+h)/0+x+h)r (x) > lim < (5 3)

hr,h her,h c(h) ’(s0+x+h)r
(x) >

< cci,(x) >.
In such a way we proved that the distribution T(x)/(s0+x) r, so (C\)n, has the

sme properties as the distribution T
0

from Theorem and we can use the assertion of

this theorem.

We shall prove, now, the existence of the S -transfor for 9 > r.

Ck( 9
Since IDk(x)l -k’e), k > 0, where C

k
do not depend on , the set of func-

tions D(x)(s+x)r--e converges to (s+x)r--e, > r, in (ii), when . Moreover,

(s0+x)r/(s+x) r, for s0,s (C\R)n belongs to D(L’); consequently

T(x) (s0+x) r
S(T)(s) lim < T(x),(x)(s+x)-9-e> lim<

a a (s0+x) r is+x) r’n(x)(s+x)r-o-e > (5.4)

< T(x)](SO+x)r,(sO+x)r(s+x)-O-e >, 0 > r.

We have seen that the distribution T(x)/(s0+x)r satisfies the conditions of Theo-

rem I, therefore

T(x+h)
S (T)(s-h) < (s0+x+h)r(s+x)-P-e > (5 5)

c(h) P c(h) (s0+x+h)r’
i(k’e)

I (-I) n ik (sO+x+h)r
-i=o c(h) Fi(x+h)A (s+x)0+e dx.

The expression Aik[(s0+x+h)r(s+x)-9-e is given by the finite sum of elements which

have the following form:

H C p(SO+X+h)r-j+P(s+x)-O-e-P j > p > 0
j,P j,

/c(h) when x n and h r.We shall analyse Hj ,P
First we prove two inequalities:

(5.6)

I(So+X+h)r 1 Is0 i+xi+hil ri
i=1 1 (ISo, i+hil + t)ri(Ixil+l)ri

ri

Is0 i+hilri + I (I x + 1)ri <
i= IImso,il’ i=i i

S C I(so+h)r/c(h)lI (Ixil+l)ri;r i=l

s0+x+h)p_jI{ =iII__ lSo i+xi+hilpi-ji < IX IIm So,
pi-ji C’

i:l i p,j"

(5.7)

Now

IHj I/cCh) < C C’ C I(so+h)rl I lxl+)=
,p j,p j,p r C(hi i=1 (si+xi)Oi+Pi+l’ P z O. (5.9)

This inequality shows that Ij,pl/C(h) is bounded by a function which belongs to

i i, when h e F. Since F.(x+h) are bounded, as well, when x n and h e r, we can use
I

the Lebesgue theorem for the integral in (5.5)to obtain that S (T)(s-h)/c(h) tends to

zero when h e r, h (R).
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The next theorem presents more precisely how S (T)(s-h) tends to zero when h e F 2p
h -. F

2
is defined in the Remark after Lemma I. We have seen that lhil ,

n, if h/, h F 2.
THEOREM 3. Let T e D’ and so E (s0,1’’’S0,n) (C\R)n. We suppose:

i) (s0,j+xj+hj)T(x+h) % I’C, h F in D’; & j n

ii) (s0,j+xj)T(x) e B’.

Then, for p > 0 and F convex cone, # 0

PROOF. We can write:

lim h.S (T)(s-h) 0 (5.10)
her2,h 3 P

Sp((s0,J+xJ)T(x))(s-h) < (s0,j+xj+hj)T(x+h),(s+x)
-p-e >

-sj+hj e’< T(x+h) (s+x) p-e’ > + (s0, j
< T(x+h)(s+x) p-e >; e’ (el.. n

where e I, i j and e[ 0. Hence

Sp(T)(s-h) (s0,j-sj+hj)-l[Sp((s0,j+xj)T(x))(s-h) < T(x+h),(s+x) -p-e’ >]

First, we shall prove that S ((So, +xj)T(x))(s-h) 0 when h F2 h
P j

rem it follows:

(5.11)

(5.12)

By Theo-

lim S ((So, +xj)T(x))(s-h) < C (s+x) -p-e > 0
heF2,h P j

remains to prove that < T(x+h),(s+x) -p-e’ > 0 when h e F2, hIt

Theorem we know that our distribution T has the form

T(x) (s0’j+xj)-li=0 ikFi(x)
where F.(x) are bounded functions when x Rn. Using this form of T, we have:

1
2

< T(x+h) (s+x) -p-e’ i(k-e) ik( -i> (-I) < Fi(x+h), s0,j+xj+hj) (s+x) >
i=0

The second part of relation (5.15) consists in fact of a sum of integrals

(5.13)

as well. By

(5.14)

(5.15)

F
i
(x+h) s

0, j+xj+hi -m( s+x P-=dx (5.16)

where m Z I; =’3 z 0 and a. Z i, i # j. All of these integrals tend to zero when h e r2,
h . We shall prove only the case: m I, =. 0. In other cases it is trivial

Let us consider the integral

fFi
(x+h) So, j +xj+hi )- sj+xj )- PJdx. 5.17

F (x+h)(s0 j+xj+hjl-i belongs to P’(Lv)for xk
e R, k # j and h r2. The function in Xjl i

for every v > I. Let p be such that ppj > and
P v

Z 0. Then for xi R, i # j,

integral (5.17) is bounded by a function in h belonging to (LU), ! ! + ! (Schwa-
u v p

rtz [I], II, p. 60).

Now, we have to prove that we can find p, satisfying our conditions, and v > i,

such that the number u remains inthe interval u < (R). Then, we have only to use the
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property of a D(LU), u < ; namely: (x) 0, Ilxll (Schwartz [1], II, p. 55)

and it will follow that integral (5.16) tend to zero when h r 2, h . Therefore we

shall analyse two cases.

In ’case > 1, we can take hence u 2v
2v ,-1

pjCase 0 < pj < I. Since +vp p
0, we have >

v 1--p pj, or <v< (1-

For such an v the number 1/u is strictly positive, hence u < .
The next example shows that Theorem 3 cannot be proved for p 0

i (x+a)(s+x)
(a-s) lln a s > 0 (5 18)

There arises an another question: If we know that (s0,j+xj)rT(x) B’ for a r > 1,

is it true that S (T)(s-h) (hr)’3 h e F 2, h ? The answer is in general negative.
P

This shows the following integral:

dt -[2
2( -e (s+t) s .exp(s12)W_12,(l_) ! s) s s > O, s , (5.19)

where W is the Whittaker function.
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