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ABSTRACT. A study is made of an unsteady flow of an incompressible viscous fluid with
embedded small inert spherical particles contained in a tube of elliptic cross-section
due to a periodic pressure gradient acting along the length of the tube. The
solutions for the fluid velocity and the particle velocity are obtained for large and
small times. It is shown that the effect of particles on the flow is significant in
the small-time solution while the large-time solution shows no effect of the particles

on the flow.

1. INTRODUCTION.

Considerable attention has been given to pulsatile flows of fluids in a tube of
various cross-section due to its increasing importance in the study of blood flow in
arteries. Womersley (1955) has studied the pulsatile flow of a viscous fluid in a
tube of circular cross-section due to a given pressure gradient. Similar problems
have been investigated for the unsteady flow of a viscoelastic liquid by Walters and
King (1970 - 1971). Khamrui (1955) has obtained solutions for a periodic flow of a
viscous 1liquid in a tube of elliptic section under the influence of a periodic
pressure gradient. Later on, Ghosh and Khamrui (1978) have investigated the pulsatile
flow model of a viscoelastic fluid in a channel of elliptic cross-section. In spite
of these works, there seems to be no study of pulsatile flow of a two-phase viscous
liquid in a tube of elliptic section due to a periodic pressure gradient. The main
objective of this paper is to investigate such problem in order to determine the fluid

velocity as well as the particle velocity, and to examine the effects of particles on
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the flow. 1t is shown that the effect of particles on the flow is significant in the
small-time solution while the large-time solution contains no effect of particles on

the flow.

2. MATHEMATICAL FORUMULATION.

Based upon the Saffman (1962) two-phase fluid model, the cquations of unsteady
motion of an incompressible viscous fluid with embedded identical small finert

spherical particles are

2 2

du _ _ 1 3p du  duy koo

ot p 3z + 2 * 2) M T (v-u) 2.1
ax ay

v 1

Tl (u - v) (2.2)

where u,v are the components of the fluid and the particle velocity in the direction
of z-axis which {s taken along the length of the tube. The last term on the right
hand side of equation (2.1) represents the force exerted by the particles on the flow

while the term on the right hand side of equation (2.2) is a similar force-term
mN
exerted by the fluid on the particles. k = —32— is the ratio of the mass density of

the particles and the fluid, commonly known as mass concentration of the dust
particles. T = E-is the relaxation time of the particles. m, N, k, p and v are
respectively the mass of a particle, the number density of particles, the Stokes

resistance coefficient, the density and the kinematic viscosity of the fluid.

The flow is generated from rest due to the periodic pressure gradient acting

along the length of the tube as

Pp _ iwt
2=Pe (2.3)

where P is a constant and w is the frequency.

The initial conditions are u(x,y,0) = 0 and v(x,y, 0) =0 (2.4ab)

3. THE LAPLACE TRANSFORMED SOLUTION.

We apply the Laplace transform of u(x,y,t) and v(x,y,t) with respect to t defined
by (Myint-U and Debnath [1987])

u(x,y,8) = [ e *Culx,y,t)at (3.1)

to solve the differential system (2.1) - (2.3). The transformed equation for
u(x,y,s) is given by

+k+ —
3u 3’u _ s (L k+s T P 1 (3.2)
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X ~ _ = _ P + s1) ~ 0 .
Substituting u = U o 5 (s-iw) (I7k+s1) into (3.2), we obtain
2= 2=
?——‘2’ 22 4= (3.3)
9x 3y

where

2 _ s(l+k+st) (3.4)

We next introduge the elliptic coordinate (&,n)defined by x+iy = c cosh(&+in)
where ¢ = (a - b ) /Zin (3.3) to transform equation (3.3) in the form

2. 2o

v + ¥Uv_ 222(cosh 2E —cos 2n) U =0 (3.5)
2 2

3E an

where 412 = qzcz-

Separating the variables by using U = ¢(£) ¥(n), we find a modified Mathieu
equation for ¢(£), and a Mathieu equation for ¥(n) as.

2—

o - 29%cosh 2€) § = 0 (3.6)
a€

2—
_a__‘k...(a
2
an

Lt 24%c0s 2n) V=0 (3.7)

where a is a constant.

Since U is symmetrical with respect to the axis of the ellipse and is periodic
with period n, ¢ is a periodic function cezn(n,zz) of order 2n (see Mclachlan
(1947)).  §is then the modified Mathieu function Ce, (£,~2°).  these are

represented by expansions

(2n)

(n,—z ) = (-D° 2 -nt A, cos 2rn, (3.7)
r=0
Ce,, (£,-22) = (-1)" { -1)F A(zn)cosh 2re, (3.8)
r=o
where Aan) are functions of 22.

The appropriate general solution for u then becomes

l4s 1T z

— P
us= T P s(s—dw)(l+k+sT)

2 2
C2n CeZn(E,—l ) cezn(n,—z ). (3.9)

If £ = Eo designates the boundary of the ellipse, the boundary condition reads
U=0 when £ = £, (3.10)

That 1is,
P (l4s1) 2 2
o s(s-1w)(1+k+sT) Z C2n 2n(50"‘ ) C%n (n,=27). (3.11)
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Multiplying (3.11) by cezn(n,-lz) and integrating from O to 2w with respect to n and

then using orthogonal relations, we obtain

2"(-1)“A(2n) P(l+sT)
Con = °— . (3.12)
Cey (Bs=27) I, ps(s-iw)(l+k+sT)
where 21 ,
Iy = £ ce, (n, -27) dn. (3.13)
Hence -
- P l+st 2 2
YT T s(s-1w)(1+k+sT) +rzo C2nC82n(§’ 2 cezn(n,—l ) (3.14)
2 22
with B = 2" = L%- .

4. SOLUTIONS FOR SMALL AND LARGE TIMES.

The form of q, that is, % clearly suggests that the Laplace inversion of (3.14)
is almost a formidable task. So in order to give a fairly good description of the
flow, the inversion will be considered in two limiting cases of small and large values
of 8 (= 22).

Case I: For small values of B, we have
ceo(n,-B) = (1 + % B cos 2n) (4.1)

cez(n,-s) = cos 2n + B(%f cos 4n - %) (4.2)

and similar asymptotic expansions for the modified Mathieu functions.

Also from Mclachalan (1947), we get

(0) (2) 1 3 (2n) n
Ay =1, Al =3 B+ 0(8), A =0(8")

so that
c, =2 U*en) (1 -1 cosh 26) (4.3)
P g(s-iw) (l+k+s1)
1 P(1 + s1) B
CZ = T2 % s(s-1w)(1+k+st) ° cosh 2 Eo (4.4)

Substituting these is (3.14), we obtain

2
u=-—L2C% __ [cosh 250- cosh 2§ - cos2n + co::hZZEcos 2"] (4.5)
8n°(s—im) ¢ °

where no is the viscosity of the fluid.
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The inversion of (4.5) gives

2
- _Pc iwt _ _ cosh 28 cos 2n
u 8—32 e [cosh 250 cosh 2§ - cos 2n + cogﬁ—fg;———d (4.6)
Consequently
P c2 cosh 2 cos 2n
Re {u} = - 8—6; [cOSh 250 - cosh 25 - Cco8 2!\ + —(;S—fz—ﬁ.g—_-l cos wt (4.7)

This result describes the fluid velocity for small B (or small s), that is for
large time t. Thus the large time solution does not show any effect of the particles
on the fluid flow.

The particle velocity in this case can be obtained by integrating (2.2) and has

the form
2 diwt  ~-t/T
v - S [cosh 2¢ - cosh 2€ - cos 2n + 22%25352523—321 (4.8)
"o 1 + for ¢ o
and its real part is
P c2 (coswt+wt sinwt—;t/T) cosh2&cos2n
Re{v} = - [cosh 2E -cosh 2E~cos2n + ———=——1] (4.9)
8n 22 () cosh 2&
o 1+t o
Expressing in Cartesian form of (4.7) and (4.9), we obtain
p 2b2 2 2
Refu} = - 5— (5525) cosut (1 - %5 - Ly, (4.10)
o a“+b a b
2.2 -t/t 2 2
Re(v) = — gﬁ— (azb 2) coswt+mrzs;nmt e a-x- Xf) (4.11)
o a +b 1 +w'Tt a b

These results indicate that in the 1limit t » =, the fluid moves faster than the
particles with a phase 1lead tan-lwt if w # 0, and for w = 0, the fluid and the

particle move in unision in the ultimate steady state condition.

Case I1: When B is large (or t is small), it follows from Mclachlan (1947) that
Ago)- 1 and for n > 1, IAo(zn)| is very small. Consequently, the asymptotic formula
gives

Ce (£,~8) = ‘I‘EIEE"E) K cosh[2¢ cosh - tanh ‘tan(n/6 - 1£/2)] (4.12)

Ceo(O) Ceo(n/Z)
1/2 °

where K (4.13)

° A§°) (2n2)

Since 2% = qc, we get

cosh[22 cosh§ - tanh—l{tan(% - %5)}]

1

=3 exp{qc coshf - tanh_ltan(% - %E)} - % (tanh % E)1/2

exp {qc coshg}.
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Hence for large values of B i.e. for large Iql,

1
h = g
-__ P (l+s1) P 1+st €o8h 7 %% _
u o s(s-iw)(l+k+sT) + p s(s-iw)(l+k+sT) h 1 exp {-qc(cosh Eo cosh £)}.
cosh 5 & (4.14)
The inversion of (4.14) yields
_ 1k
P 2 2 t
Re{u} = - — 337 {wtk coswt + (l+k+w 1" )sinwt -~ wtke }
pw[(1+k)“+w 17)
+ ————Li——z—f— {e_r[wrk cos (wt—-8)+( l+k+w212)sin(ut-6)]
pw[(1+k) “+u T
1 1+k
_1 }” T wtkp - m(l+k+w212) e Msin (& [u(u I )]1/2)du
LIV l‘|2+<’2 v -1/t
Tlo
1+k 1
w, — -ut u(y- — cosh = &
kTt e e (e 1 e 2 0 (4.15)
To1bk u——lik- AV |.|-l coshli
< T T 2
where ) )
r = za (—L—— 73 )/2, § =2z a, (———m2 3 ) /2, z = c(cosh Eo - cosh &),
2v(1l+w t7) 2v(l+w 1)

1 1 1
a, a, = (%) /2{[w2k212+(1+k+w212)2] /Z:t wtk} /zand fi:: - [i + j: .

In the case of fluid flow without particles (k=0), the velocity field (4.15) assumes

the form
Re {u} .% - —-81:"": + EE {sin[wt - v’% c(cosh £ - cosh £)] x
- cosh Iy €
x exp [-V5— c(cosh & ~ cosh £)]} —————— +
2v o 1
cosh + £
2
cosh £ ~ut u
+ %_ f o Iw ; 5 sin [c(cosh E —cosh E) /l"l’- 1dp (4.16)
P cosh 36 ° Wtw °

This is identical with Khamrui's result (1955), when P is replaced by -P and t + =,
We further note that the result (4.15) represents the small-time solution for the two-
phase fluid velocity. Moreover, the presence of the parameter k and 1 in (4.15)
indicates that the fluid velocity is significantly affected by the particles when t is
very small. This small-time solution also exhibits the boundary layer character of
the flow similar to that of the fluid motion without particles. The thickness of the

boundary layer decreases with increasing values of the particle concentration.
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The particle velocity, when B is large, is given by

-t/t
Re{v} = - 53 {otk [T sinwt + cgs;st e ]+
pwl[(1+k) “+w"T7] 1+ 1tw
-t/1 _ Ik
+ (l+k+w212)[w1 e sinzmtz: -~ wicosut, _ wr(e_t/T-e Ty}
1 +17w
cosh 1 E -t/t
P 2 0, -r Tw sin(wt-8)+cos(wt-8)+e (wtsind-cosé)
* 2,22 1 le ekl 2 2 1 ++
pw[(1+k) +w t"] cosh 5 £ 1+ w71
2 2 sin(wt:-&)-wtcos(mt—6)+e_t/r(w1'cos&+sin §)
+ (1+k+u" 1) | 1}
2 2
1 + w1t
1 k
®, = - 2 2 _ _ wu = —)
_% / T wtky w(l+k+¢; 12) (e t:/t_e ey oin 12— [ lr ]/2 }u
1+k ™ - 1/1) (W +w”) Vv n-=
T »O T
1 1+k
®, = -t/T_ _-pt wlpy — =)
+-:—k- I T e € 1+K) sin {i_— [——_——l—/—{‘t—'—] /2} dul (4.17)
R T Y T /v ¥
’

Finally, the results corresponding to the circular cylinder are obtained by

cosh % go a
replacing c(cosh EO - cosh £) by (a - r) and —T by v T in (4.15) and (4.17)
cosh 7 [ 4
where a is the radius of the cylinder. In particular, when k = 0, we find from (4.16)
that .

1
Re{u}-—%s—j"u:—m-+%(-al—_) /zl%osin {wt - (a - 1) 'li%)}

o oMt -
+ % fo ﬁ sin {(a - r) /‘%} dul. (4.18)
wotow

where tz = x2+ yz. This is a well-known result for large w and t » .
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