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ABSTRACT. A simple proof of a theorem of H. Hopf [1], via Morse theory, is given.
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1. INTRODUCTION AND THE THEOREM.

Let f R" -- R be a smooth map, and let

V {(zl,.-. ,z,)6 R"lf(zl,... ,z,)= 0}.

Suppose V is compact and the gradient, Vf, of f is nonzero on V. Then V in an (n 1)-
dimensional real orientable hypersurface in R". Let U be the unbounded component of

R" V. We may suppose that f > 0 on U, otherwise consider -f. We shall give V the

following orientation. Let v V and let Vl,... ,v,-a be a positively oriented basis for

the tangent space TV,,, regarded as a subspace of TRy. We say that V has the positive

orientation at v if

det > O.

Vn--I

V has the positive orientation, if it has the positive orientation at each of its points. Let

S"-1 be the unit sphere in R", along with its usual orientation. Consider the Gauss map

r/: Y S"- which assigns to each point of V, the unit normM vector Vf/llVfl I. Let d be

the degree of r/. For a real compact manifold W, let x(W) denote its Euler characteristic.

We can now state the theorem which relates d, with the Euler characteristic of certain

hypersurfaces arising from f.
THEOREM (HOPF [1]). Let f, V, d be as above. Then

xv.---.l) if n is odd
d=

x(f-<O) ifniseven.
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2. PRELIMINARIES.

The main idea of the proof of the theorem is to apply Morse thcory on V, using a

convenient Morse function. According to a theorem of Sard, the set of critical values of r/

has measure zero in ,.’n--1 [9,]. Hence, after rotating the axis if necessary, we may assume

that the points (0,... ,0,+1) are not critical values of 9. Let r(xi,-.. ,x,) x, be thc

projection onto the last coordinate, and let h ,rlv be the height function on V. Let p bc

a critical point of h. At p we have:

f-O, --Ox---O’ i=1,...,n-1, 1- --x’ AR.

LEMMA 2.1 [3]. With the above considerations, p is not a critical point of 9, and p

is a nondegenerate critical point of h.

PROOF. We observe that 9(P) (0,..., 0, :kl), since 0--Zj. (p) 0. Hence, p is not a

critical point of r/. In terms of local coordinates ul,---, u,,_l on V, this means that thc

matrix --: ], i, j < n, is nonsingular at p. In fact, near p we can choose local coordinates

Ul,---, u,-i so that Xl ul,." ,x,.,-1 u,_l,X,, h(ul,... ,u,,-1). Then,

2h is nonsingular,Hence, =k 2h at p. Therefore, the matrix J <ouj 9u, (guj

which implies that p is a nondegenerate critical point of h. |

Set S 9-(0, ,-1), N 9-1(0, 1). Then the above Lemma shows that h

is a Morse function on V with critical set S U N. For p ( S t.J N, we denote by i(p) the

Morse index of h at p, which is equal to the number of negative eigenvalues, multiplicities

counted, of the real symmetric matrix
oi0u [4].

Also, for p E S U N we define sgn(p) to be

sgn(p) ( 1 if near p, r/preserves the orientation

-1 if near p, r/reverses the orientation.

In addition, if a is a real number, a 0, we will denote its signature by sign(a).

REMARK 2.1. 2d ,e_SoN sgn(p), x(V)= pESoN(--1)’0’), [4].

We will now compute sgn(p), for p E S O N. Let G U V be a local pararnetriza-

tion of Y near p, defined by G(xl,... ,x,_) (x,... ,x,_,h(x,... ,x,-l)). Set

P (Pl, P,-). Then,
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sgn dGf sign det

Vf(p)
,c()

)._, O(p)(- sign Oz,
dG( "o

Oz,,_

On the other hand, if k U1 S"-1 is a local parametrization of S

near the point (0,..-,0, =.(p)/l=.(p)l), defined by k(sl,...,Sn_,)

oa_=. V/1 2), then,(,... ,,_,,i (p)

sgn dko sign det

Wf(p)
dk( o

Of=(_l).-,signx.(p

Also, near p, r/= -sign.(V) (Vh,-1) Hence,

0 (2.)sgn(p) sgnd(k-a o o G)(ff) -sign (p) sign det o,,’o.,

LEMMA 2.2. For p E S U N, sgn(p) -sign detBH(f)(p), where BH(f)

0 V(f) is the Bordered Hessian matrix of f.Vtf H(f) ’J
PROOF. We have f(u,,..., Un_l, h(u,..., lln_1)) 0, where ul,-.. ttn_l h, are as

in Lemma 2.1. By differentiating the above identity twice, and evaluating at p, we get

0 f Of 0 h
+ ux,.,--"--(P)oiu O, 1 < i,j < n 1. (2.2)

OziOzj

Using (2. 1) we get sgn(p) -sign p sign det

sign det 2’z,’=, -signdetBH(f)(p) |

REMARK 2.2. If n is even, then x(V) O.

PROOF We have x(V) ’]t,es(-1) i0’) + t,er(-1)i0’). But if p E 5’ then

sgn(p) (--1)i(1), while if p e N, sgn(p) (--1)(--1) i(1). Hence,

pES pEN
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3. PROOF OF THE THEOREM Case i. n is odd. We observe from (2. 1), that

0’hsgn(p) signdet au,o, (-1 Hence, by Remark 2. 1,

x(v)=
p6SAN pSN

Case ii. n is even. Then, let us consider V- {f < 0}. This is a compact orientable

manifold with boundary V. Consider the double covering W of V-, ramified along V,
which is defined by

=0}.W {(xa,... ,x,,x,+a) R"+alf(xl, ,x,) "- Xn.i.

W is a compact n-dimensional nonsingular hypersurface and x(W) 2x(V-)- x(V)
2x(V-), since n is even. We orient W as we oriented V. On W we consider the height

function , where [w, (Xl,... ,Xn, Xn+) Xn. Let l" W S be the Gauss map,

and let a be its degree. Regard Rn, S,N as subsets of R"+

As in Lemma 2.1, we have that if p S U N, then p is a nondegenerate critical point

of ]z. In fact, S t.J N is the critical set of , and the points (0,--- 0, +1, 0) are not critical

values of h. Let now p S t.J N. p is viewed as a critical point of both h and h, and also as

a noncritical point of r/and f/. Denote by s-if’if(p), the sgn(p) viewed as a noncritical point

of /. We have:

sgn(p) (-1)signdet V’f H(f) (-1)signdet V’f H(f) 0 s--9-’g’ff(p).
0 0 2

Hence, d d= x(__._A) x(V-) x(f < 0). The proof of the theorem is now complete. |
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