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ABSTRACT. Jungck [I] obtained a flxed-polnt theorem for a pair of continuous self-

mappings on a complete metric space. Recently, Barada K. Ray [2] extended the theorem

of Jungck [I] for three self-mapplngs on a complete metric space. In the present

paper we omit the continuity of the mapping used by Ray [2] and replace his four

conditions by a single condition. Our results so obtained generalize and/or unify

fixed-polnt theorems of Jungck [I], Ray [2], Rhoades [3], Cirl [4], Pal and Malti

[5], and Sharma and Yuel [6].
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INTRODUCTION.

We quote two theorems:

Theorem I. (Jungck [I]). If S and T are continuous mappings of a complete metric

space (X,d) into itself such that

i) s(x) cT(X),

ll) ST TS, and

ill) d(Sx,Sy) < a d(Tx, Ty) for every pair of points

x,y X and for a [O,l), then

F
S

F
T FS, T {u} for some u in X,

where F
S {x e X: x Sx}, F

T
{x E X:, x Tx}

and FS,T {x E X: x Sx Tx}.

Theorem 2 (Ray [2]). Let T be a continuous mapping and T and T
2

be any other

two mappings of a complete metric space (X,d) into itself such that

i) TT
1 TiT i 1,2,

il) U
2 Ti(X) c_ T(X), and

Ill) at least one of the following is satisfied for every pair of points x,y in X:
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ad(Ty, T2Y)d(Tx, TlX)
d(Tlx’ T2Y) + d(Tx, Ty)

where 0 a, 13, a + 13 < I,

+ 13 d(Tx,Ty),

d(TlX T2Y) X max (d(Tx,Ty), I/2[d(Tx,TlX)+d(Ty,T2Y)]

I/2 [d(Tx,T2Y)+d(Ty,TIX)

where 0 < 1, (1.2)

d(Tlx,T2Y) max {d(Tx,Ty), d(Tx,TlY) d(Ty,T2Y),

d(Tx,T2Y), d(Ty,TIX)}

where 0 < 1/2,

d(TlX,T2Y) max {IKId(Tx,Ty) K2d(Tx,TIX) I,

[KId(Tx,Ty K2d(Ty,T2Y)]}

where -I < K
2

K < K
2
+ < 2, K < I.

Then FT, TI,T2
is non-empty, where

FT,TI,T2 {x X: x Tx TlX T2x}

FTI FT2 {u}, for some u in X.Furthermore, FT,T IT2
2. MAIN RESULTS.

Now we give our result.

THEOREM 2.1. Let (X,d) be a complete metric space. Let T,TI,T2: X X satisfy

(I), (li) of Theorem 2 and (i) let the following conditions hold for every pair of

points x,y in X:

d(TITX,T2TY) I max {d(x,TiTx) d(y,T2TY), d(y,TITx),d(x,T2TY),
a[ l+d(y,T2TY) ]d(x,TITX)

[d(x’TITx)+d(y’T2TY)]’ -I:-d(x,y-)-

+ 13[d(x,TiTx)+d(y,T2TY)]+ v[d(y,TiTx)+d(x,T2TY)

+ , d(x,y)], IZld(X,y)-Z2d(x,T1Tx)l,

K d (x,y)-K2d(y ,T2TY
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where 0 I, ,,, 6 ) 0, + + + 6 < I, 2 + < I,

0
(S + v + )
l-u(a + S + ,) < I, -I < K

2
K < + uK2 < 2, K < I.

Then FT,TIT2 is non-empty, where

FT,TI,T2
{x e X: x Tx TlX T2x}

Furthermore, F
T FT2 F

T’TI ’T2
{u}, for some u in X.

PROOF Let x E X, define
O

X2n+l TlX2n n O, 1,2...

X2n T2X2n_l, n 1,2,3...

Then, using Theorem 2. l, (i), we have

d(X2n+l X2n) X d(X2n X2n_l)

(S + v + )
r}where K max {, -I-’ l-(a + B "+ )’

where

K
max [K I- K2, + t K2}’ KI > 0,

-K
max {K I- Z2, _---K--’--}, K < 0.

{xn} is a Cauchy sequence. Since X is complete there exists u X such that

x u as n/ (R).

Now,

d(TiTu, X2n) d(TITU,T2Tx2n_l).
Then using Theorem 2.1 (i) and allowing n -such that X2n u, X2n_l u etc,

we have u TITU. Hence u TITU TTIU using Theorem 2 (i). Further,

d(X2n+l,T2Tu) d(TiTX2n,T2Tu). Again using Theorem 2 (i) and allowing n

such that X2n u, X2n+1 u etc, we have u T2Tu. Hence u T2Tu TT2u.
Now, let v denote any common fixed point of TIT and T2T. From Theorem 2.1 (1), it is

easy to see that u v since 2 + 6 < I. For proving u Tu we have

d(Tu,u)ffid(TT1Tu,T2Tu d(TITTu,T2Tu

which yields Tu u using Theorem 2.1 (i). Hence u TITU TlU. Similarly, u T2Tu
T2u. Hence, u Tu T1u T2u which shows that FT,FT ,FT are non-empty. Then we

2



782 MAIBAM RANJIT SINGH

can see that F
T FT2 F {u} for some u in X. This completes the proof.

T’TIT2
EXAMPLE. Let X [0,I] with Euclidean metric d. Let Tx x, 0 x < I, Tx =I/2,

x x
x l, TIX , 0 x < l, TIX .--, x 1, T2x -, 0 x < 1, T2x =-t-" x l.

Here T,TI,T2, are all dtscount[uuous at x and have a unique common fixed point x

O. Take x R, y- . Obviously all the conditions (t), (it) of Theorem 2 and (i) of

Theorem 2. hold true. Hence the result.

REHARKS. (1) Contractive Definition 20 of Rhoades [3] is a special case of

condition (i) of Theorem 2.1. (2) Theorem o Ctrct [4], Theorem of Pal and Haiti

[5], and Theorem 4 of Sharma and Yuel [6] are special cases of Theorem 2.1.
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