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ABSTRACT. 1ne model for resistive diffusion of a force-free magnetic field in a compressible plasma is
analyzed. Such a model has been suggested for describing the behavior of the solar outer atmosphere and
that of solar flares. Previous analysis of the model involved assumptions of linear plasma velocity and
constant magnetic energy. This paper deals with nonconstant magnetic energy in the cases of linear plasma
velocity and planar plasma velocity. Some necessary conditions on the plasma direction vectors are derived.
Finally, some aspects of the model assumptions are discussed, including nonnormality of initial data vectors

to initial surfaces.
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1. INTRODUCTION

In this paper we consider the model for resistive diffusion of a force-free magnetic field in a compressible
plasma which moves to compensate for changes in the magnetic configuration. Such a model has been
suggested by Low [1] for describing the behavior of the solar outer atmosphere and of solar flares.

Let B(t,Z) be the magnetic induction with domain [0,7] x § C R x R® where S is an unbounded
region. Let W(t,i’) be the velocity of the plasma. The model for resistive diffusion is given by

B, =V x (W x B) +nV3B (1.1)
VxB=aB (1.2)
VeB=0 (1.3)
(VxW—aW)eB=0 (1.4)

where a(t,Z) # 0 is a scalar function and where n > 0 is the constant resistivity of the plasma. In addition,

taking the divergence of equation (1.2) and using equation (1.3) yields the relationship

BeVa=o0. (1.5)
For a static plasma (W = 0) and an initial force-free magnetic induction By(Z) = B(0, Z), Chandrasekhar-
Kendall 2] showed that B(t, %) remains force-free for all time if a is constant. Conversely, Jette [3] showed
that B remains force-free for all time only if « is a constant.

We assume in our development that « is not constant. Consequently, the direction of the magnetic field
lines may vary with time at each Z € S. In order that the magnetic field remains force-free, it is necessary
that the plasma velocity vary, say W = W(t, Z). Equations (1.1) and (1.4) indicate the relationships between
B and W for such a setting.

Low [1] considered equations (1.1)-(1.5) for a special case F o k = 0, W = wk, and Va = a,k. He also
assumed that the magnetic energy %"ﬁ"’ is constant. We consider a more general setting in this paper.

2. DERIVATION OF THE MODEL

We briefly review the derivation of the model from Maxwell’s equations. A more thorough development
can be found in Priest [4]. A continuous single-fluid plasma which is in thermodynamic equilibrium with

distribution functions can be modeled by Maxwell’s equations:
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VxB=ul+ 5E (2.1)
VeB=0 (2.2)
V x E=-B, (2.3)
VekE=ge (2.4)

where E is the electric field, J is current density, s is magnetic permeability, ¢ is permittivity, and g is the
charge density.

Define Ey = |ﬁ[, By = |§|, and Wy = |W’| Two basic assumptions are usually made in magnetohydro-
dynamics:

Wo < ¢ and Ey=W;B,y,

8o that for typical length & and typical time ¢o,

E, . WoBo _W3Bo _ W3 Bo
2ty 3ty Mo 2 Ly

Comparing the magnitudes of terms in equation (2.1) and using the above approximation, the displacement

current term is negligible: |c‘2§g| < 1. As a mathematical approximation, assume that E, =0.

Also, a solar plasma is essentially electrically neutral; that is, if the number density of positive ions is
n, and the number density of negative ions is n_, then the charge density is small: o = (ny —n_)e< 1.
With these assumptions, equations (2.1) and (2.4) become VxB=pSandVeE=0.

Since the plasma is moving with non-relativistic speed, it is subject to an electric field W x Bin
addition to the electric field E. In the frame of reference moving with the plasma, Ohm’s law is given by

J = o(E + W x B) where o is electric conductivity.
In active regions, if the magnetic field is small, then the Lorents force is negligible and the magnetic

field is approximately force-free. As a mathematical approximation: IxB=0oruJ= aB for some scalar
function aft, Z).

Ohm’s law and the force-free assumption imply E = naB — W x B where n = (ou)~! > 0. Combining
the above derivations with (2.1)-(2.4) and using V x (aB) = —V25 yield the model of resistive diffusion
(1.1)- (1.4).

3. THE MODEL FOR AN IRROTATIONAL PLASMA

In this section we ider an irrotational plasma, so the velocity W satisfies the condition ¥ x W = 0.

Consequently, equation (1.4) implies B ¢ W = 0. It can be shown that
Vx(WxB)=(BeV)W - (VeW)B - (WeV)B
and
V(BeW)=oW x B+ (Be V)W +(We V)5
Solving for (B e V)W, substituting in equation (1.1) for B, and grouping terms yields
B +2WeV)B+ (na®+V eW)B + (nVa+aW) x B=40.
Define the magnetic energy to be £ = 15 o B; then dotting the above equation with B yields
& +2(W e V)€ +2(na® + VeW)E =0.

Make the change of dependent variable: B = +/2¢ C; then Ce =1 and

G +2(W e V)C + (nVa+aW) x € =, (3.1)
5x6—a6+%‘7€x6=5, (3.2)
o 1 o -

Vel+;VeeC=0, (3.3)

CeVa=0 , CeW=0. (3.4)
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Solutions to (3.1)-(3.4) will be constructed using the right-handed orthonormal system of differentiable
vectors J(t,:i'), #(t, Z), and p{t,Z) = d'x 7. For notational purposes, the directional derivative §o Vf of a
scalar function f will be denoted by f; (where the vector cap on § is omitted). Similarly, the directional
derivative (7o V) f of a vector function f will be denoted f.
Choose plasma velocity W = wd where |w| # 0 is the speed of the plasma. Let G = (cos ¥)p + (sin y) v
where ¢ = ¢(t,). Clearly C is a unit vector and the orthogonality conditions in (3.4) are satisfied.
Substitute € in (3.2) and dot with d, ¥, and P, respectively, to obtain
(cos )ty + (sin9)py = (cos9)(d'e ¥ x '+ £)+ (siny)(de V x 7 &),
—(sin §) g = (cos ) (e V x 5~ £4) + (siny) (¥ V x ¥~ @), and
(cos)pa = —(cos ¥)(F e V x f— a) — (siny)(F'e ¥ x 7 + £4).

Substitute € in (3.3) to obtain

—(sin ¥)¥p + (cos ¥)py = —(cos ) (V o 5+ f—;) —(sing)(Voo+ '%)'

In solving the above equations, define @ = [cos % sin ¢|T and

Mo TeVxyp a-6~x6 N de¥Vxp deVxi R= 0 -1 ,
—PeV xXF —FeVxd Vep Veu 1 0

then the solutions ¥4, $o, and ¢, are given by $4 = a—&T RM@, ¢, = —&T RNG+ fz.-, and yp = dTNaG— -ft
with a compatability condition %4 = &T M. Substitute € into (3.1) and dot with d to obtain

(cos¢)[d e (5 + 2wha) + nae| + (sin 9)[d'e (5 + 2wia) — nay) = 0. (3.5)

Dotting with @ or § produces ¥ + 2wiq = p'e (¥ + 2wis) + nag + aw. Substituting W=wdinVxW=0
and dotting with d, ¥, and 7 yields de ¥V x d' =0, wp = —w(Te ¥ x J), wy, = w(p'e vV x J), respectively.
Finally, substituting € in (3.4) yields

(cos ¥)ap + (sin ¥)a, = 0. (3.6)

~deg, dep
8=
2wdepy 2wdeiy

One can solve equations (3.5) and (3.6) for ap and a, in terms of S. The general model for an irrotational

Define the matrix

plasma can be written as

o ép

Y4 =a— & RM3a, +,=-aT RNd+ 26 Y= &TN& - 25 (3.7)
Ve + 2w = p'e (U + 2wia) + naq + aw,

% =aTMa, &+2wéi+2na®+wVed+wy)é =0, (3.8)
ap = %[a"sa+ Ged, a,= -:;[&‘TRSE— Peed), (3.9)
deVxd=0, wp=-wieVxd, w,=wpe¥xd (3.10)

Solutions to these equations provide the plasma velocity W = wd, the scalar functions a, and the
magnetic induction B = v/2€ [(cos $)§'+ (sin $)7].
4. LINEAR PLASMA MOTION

- = -~ =

Suppose that the vectors ;, ¥, and § are constants. Let d = def,v=0veZ,andp= p'e Z. The model

for an irrotational plasma (3.7)- (3.10) reduces to

Ya=a, ¢,= :_E’ v’p:":—;, Y =naqg — aw (4.1)

& +2(na’+wy)é =0 (4.2)
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where a = a(d,t), w = w(d,t), ¥ = ¥(d,v,p,t), and £ = €(v,p,t). Consequently, (na? + wa)y = (na? +
wa)p = 0. Differentiate (4.2b) with respect to d to obtain (na2 + wg)4 = 0. Thus, na? + wq is a function of

t only. Moreover, one can solve for the energy function:
¢
E(t, %) = %exp (—2/ na3(s,d) + wa(s,d) da) 1Bo (D)2,
0

where By (Z) = B(0, £). The condition &4 = 0 forces the initial data to satisfy (d'e V)(]| Bo]|?) = 0.

From the equations (4.1b,c), compute ¥,, in two ways and equate to obtain (log £).p = 0. This forces
& /€ = f(v) and &,/€ = g(p) for some functions f and g. In addition, this implies || Bo||? = F(v)G(p) for
some functions F' and G. The gradient equation for ¢ may be written as

Vo = ad + f(v)7 - g(p)7.

Take the t-derivative of this equation to obtain Y4 = a;. Take the d-derivative of equation (4.1d) to obtain

Y4t = (nag — aw)q. Thus, one need only solve for @ and w using the equations
ar = nagq — (aw)s, (na?®+wa)a=0.

One can then solve for ¢ from its corresponding equations:

¢(‘v d,v, P) =sin~? (')I.l.ﬁoﬁlr) + /o‘['lad(‘vd) - a(a, d)“’("d)] ds.

Note that in the special case where £ is a constant, it is necessary that na® +wq = 0, a¢ = nagqa— (aw)d,
and Y4 = a, just as in the paper by Low [1].

5. PLANAR PLASMA MOTION

Suppose that the plasma velocities J(t, Z) all lie in the same plane whose normal vector is the constant
vector 7. Without loss of generality assume that ¥ = E, d = (cos~,8inv,0), 7= (sinvy,—cosv,0). The
model (3.7)-(3.10) becomes

Va=a-sinpcond, Yo=wcol b+ %, Yp=masimpeosd—2F,  (5)
¥ + 2wa = naq + aw,

% =qpcos?y, & + 2wl +2(na? +wa)é =0, (5.2)
ap = ;l,-('vc +2wy4)singcos, a, = —'l,("n + 2wg) cos? ¥, (5-3)
wp = ~wYa (5-4)

where v = v(d,p,t) and w = w(d, p,t).

THEOREM 1. In order that the vectors d be planar, but not linear, it is necessary that VE #0.

PROOF. Suppose that VE = 0. Then equation (5.2a) implies 7,cos?p = 0. If cosyp = O, then
0 = ¢g = a, a contradiction. Therefore, 7, = 0 is necessary. The equations (5.1a,b,c) become $g =
@, y =14c08? ¢, and ¥, = Yasiny cos .

From these equations compute y,, = —292sin?cos®p = ~3(cos? —sin® ¢) cos? Y, which implies
qgcos? ¢ = 0. Since cosy # 0, it must be that 7¢ = 0. Combining this with 4o = v, = 0 implies

= 4(t). We now have ¥4 = a and ¥, = ¢, = 0. These imply ay = a, =0, and so equations (5.3a,b)

imply 0 = 4¢ + 2wv4 = 7. That is, 7 is a constant and the plasma motion is linear. O

EXAMPLE 1. We attempt a solution to the planar model where d= (z/r,y/r,0), z = rcosy, and
y = rsiny. Assume that a = a(r), w = w(r), £ = £(t,r) = f(t)g(r), and ¢ = ¢(r). The model equations
become ¢, = a — Lsiny cos ¢, 2w, = na, + aw, & = Llcos?y, and & + 2wE, + 2(na® + w,)€ =0. The
assumption of separability of £ implies 17(t)/f(t) + wg'(r)/9(r) + na® + w, = 0. Thus, f(t) = exp(-2bt)

and g(r) = aexp(fy w(s) ~}[b — na®(s) — w.(s)] ds) for some constants a and b.
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Moreover, the model equations imply sin ) cos p = 7= (aw —na,) and cos? P = L(b— na? —w,). Taking

the quotient of these two and solving for ¢ yields

b=t ().
The functions @ and w are determined by the trigonometric relations between sin ¢ and cos ¢, by the equation
$r = 12429 454 by the initial data g(r) = £(0, Z) = 1[|Bo(2)[12.

EXAMPLE 2. There is no solution to the irrotational plasma model for motion vectors of the form
= (—y/r,z/r,0) where y = —rcosy and z = rsiny. The functions @, w, £, and ¢ depend on r, v, 2,
and t. The model equations become ¢, = ra, ¢, = }cos’q/’ + -gg.-, Y = }sin¢cos¢ - 2%.-, &, =0,
Et+2(na®+w,)€ =0, a, = ¥singpcosy, a, = —22 cos? Y, wy =0, and w, = —¥.

From these equations compute t, in two ways and equate to obtain w(cos y) +na(sin ¢) = 0. Similarly,
compute ¥, in two ways and equate to obtain w(cos ) — na(sin ¢) = 0. Since cos ¢ # 0 and siny # 0, it
must be that w = 0 and a = 0, a contradiction to the assumptions of the model.

6. THE GENERAL PLASMA MODEL

Without loss of generality, use the right-handed orthonormal system of differentiable vectors d =

(cos -y sin ¢, sin y 8in @, cos ¢), ¥ = (— cosycos $, —sinycos $,sin $), and 5= dxv= (sin «y, — cos«y,0) where

v =19(t, %) and ¢ = ¢(t, Z). The matrices in the plasma model (3.7)-(3.10) are given by

- Tpsing ¢p —Vacos ¢ [ Tpcos ¢ Yo €08 P ‘
Yosing+racosd by | vasing—vecosp ga+pcosd
and
. —¢¢ Ve sin ¢ )
[ yasing  wha ]

The general model is extremely complicated in form. However, one can determine necessary conditions
on the plasma velocity for existence of solutions from the compatability condition (3.8a), which in this setting

becomes

ay

'je =a [ peind dp ] d=:a"Qa.
Toting &,

The condition (3.10a), d'e ¥ x d'= §, implies ¢, =+, sin ¢. Thus, the matrix Q is symmetric. We consider

here the two cases: £4 =0 and 3 # 0.

THEOREM 2. Suppose that £; = 0. A necessary condition for existence of solutions to the irrotational
plasma model is: det Q < 0.

PROOF. The compatability condition a7 Q3 = 0 is a quadratic equation which represents a degenerate
conic section. Factor Q = RTAR where R is orthogonal and A is diagonal, say A = diag();,A2). The
quadratic equation is then equivalent to A1 €2 + Az¢2 = O where £ = [£; &|T = Rd. If detQ > 0, then
sgn()1) = sgn(A;) # 0. Consequently, £ = 0, so & = 0. But this is a contradiction to ||G]| = 1. Thus, it is
necessary that det Q < 0. O

Note that if det Q < 0, then the two equations @7 Qd = 0 and [|@| = 1 have four solutions (given in

terms of £):
[ [ [ [x
i( Ag—)l’ Al—Az)' i( Aa_l\l’ AI_XZ ’

It may be that these lead to multiple solutions for the magnetic induction B and scalar function a, for the
same plasma velocity w.

THEOREM 3. Suppose that £; # 0. A necessary condition for the existence of solutions to the
irrotational plasma model is: det @ < 0 or sgn(trace(Q)) = sgn(4#).

PROOF. As in Theorem 2, factor Q = RTAR where R is orthogonal and A = diag();,A3). One
obtains a quadratic equation A1 £7 + A3€3 = 4/ where & = R&. There are no solutions to this equation
if sgn();) = sgn(Az) = —sgn(%.‘). This set of equations is equivalent to det(Q) > O and sgn(trace(Q)) =
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—sgn(‘,}). Therefore it is necessary for existence of solutions to the plasma model that det(Q) < 0 or
sgn(trace(Q)) = sgn(£2). O

Define ¢ = £4/€. Suppose that 5: > 0 and icl > 0. The quadratic equation in Theorem 3 defines an
ellipse in IR? with center at the origin and whose axis lengths (measured from the origin) are £, = \/c/—z\I
and 4 = \/7:\; If the plasma model has solutions, then it is necessary that this ellipse intersect the unit
circle. This happens if £; <1 < £ or if £; > 1 > £3. In either case, there are four solutions to aTQdi=c
and ||&]| = 1.

Similarly, if 5;} > 0 and 5‘_?- < 0, then the quadratic equation in Theorem 3 defines a hyperbola in R?
with center at the origin. The distance from the origin to the hyperbola is given by £ = \/c_/—a\—l If the
plasma model has solutions, then it is necessary that £ < 1. In this case, there are also four solutions to
@7 Qd = c and ||@|| = 1. Analogous to the setting for Theorem 2, these solutions may produce different
magnetic inductions B and scalar functions « for the same plasma velocity W.

7. OBSERVATIONS

One basic assumption for the plasma model is that of electrical neutrality given by ¢ < 1. One can
interpret this assumption as ¢ = O or one can treat the problem from the point of view of continuous
dependence. In either case, the electric divergence equation cannot be ignored in the development of the
model.

For example, Low [1] had attempted a solution of the solar plasma model of the form ﬁ(r, t) = Bif +
B0 + B3z where z = rcosf and y = rsind. Consequently, B, = 0, B3, = —aB,, (rBz), = arBs,
By — n[2(rBy,r)r — B3] + (v1Bs), = v2Bs — v3Ba, and By — ni(rBs,), + L(rv; Bs) = O where the
velocity is given by 9(t,Z) = vi(t,r)f + 2 (vg (t,r)0 + valt, r)i) .

A steady solution of these equations is B(r) = ar(1+4a%r3)"18+ (1+a%r%) "3, a(r) = +2a(1+4%r%)"},
and ¥(r, 2) = 2na[—ar(1+4a%r?)~1#F2a%rz(1+a%r) 4] where a is an arbitrary constant. It must be pointed
out that these functions do not satisfy equation (1.4). More precisely, the condition Be(Vxv—ad)=0is
not satisfied. It can be shown that
4a32(1 — a®r?)

(1+ a2r2)3

for @ # 0. Moreover, for |z| sufficiently large, || is large, a contradiction to the assumption of electric

e=VeE=-Be(Vxi—ad)=

neutrality.

We also provide an answer to a question by Priest (4] on the conjecture of non- normality of initial data
50(5) to any smooth initial surface for the force-free model ¥V x @ = aii, V e i = 0. These equations are
equivalent to

Ai, + Biiy + Ciy = aDi (7.1)
where A, B,C, D are 4 X 3 constant matrices whose entries are 0, 1, or -1.

Let 5(s,t) be a C?-surface in IR® which acts as the initial surface for the force-free model. Define

#(s,t) = (5[, t)) as the initial data on the surface. Then

Po = Tyly + Yoty + 2,8, and fp = z4ty + Yy + 2¢U5. (7.2)

Consider the equations (7.1) and (7.2) evaluated on the initial surface. Define the 4 X 1 column vector

# =7, X f¢ A]T where A is an arbitrary scalar. Then aiie Dg+ 7, e d¢ — 7§, = (RT A+ 2,57 — z,5T )i, +
(AT B + y, 5T — pT)dy + (ATC + 2,5T — 26,7 )ii, = AV o & = 0. Therefore,

a(ﬁaxﬁt°$)+ﬁa°$t'ﬁt‘$-=0' (7.3)

THEOREM 4. The initial data ¢(s,t) # 0 cannot be everywhere normal on any open subset of the
surface p{s,t).
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PROOF. Suppose that & is normal everywhere on an open subset of the surface. Then $= K(s,t)p, % pt.
Replacing this in equation (7.3) yields aK||7, X 5:||2 = 0. But a # 0, 5, X 5 # 0, and K # 0, a contradiction.

Thus, J is not everywhere normal to the initial surface. O
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