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ABSTRACT. We introduce the operation OL copulative with T L to define PN space
»
under oL and establish some basic properties of probabilistic seminorms and norms

under oL Finally, we discuss so-called L-simple spaces.
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1. INTRODUCTION.

In ([1-4], \S’erstnev introduced the concept of PN space. A triple (V,v, 1) is
called a PN space, if V is a vector space over the field K of real or complex numbers,
v is a function from V into A+. the set of all distance distribution functions, <t is a
continuous triangle function, and for any p, q € V, a EK with a # 0, the following
conditions hold.

(1) W0) = ¢, (1l.1)
(i1) Wp) # € if p 20, (1.2)
(111) Wap) = |a| @ w(p), (1.3)
(1v) Wp+a) > 1 (W(p), W), (1.4)

where |8| ® Wp) = v(p)(j/|a|)r and j denotes the identity function. Since ®
and T are not always cooperative as multiplication and addition, there is a certain
difficulty in the further development of PN space theory. In fact, for any
P, q €V, a € Kwith a > 0, we can estimate wap+aq) in two ways and the two estimates
are not always consistent (see Schweizer and Sklar [5], p 238). To overcome this
objection, MuStari and \éetstnev [6~7] had to focus their attention on homogeneous
triangle functions.

In this paper, we establish the operation@L copulative with L and use it to

discuss PN spaces under T, ,where A+ x A+ -+ A+,

T,L T,L:
1y ((F,0)(0) = sup [TI(F(w), 6(v)) | L(u,v) = x}, xcR*, F, Ge A, T 1s a continuous
’

t-norm, and L:R+x R+-> R+ satisfies:
1) RanL = R;
2) L has 0 as identity;

3) L is a nondecreasing in each place, and if uy < Ugs Vy < Voo
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then L( up, vl) < L(UZ’VZ) B

4) L is continuous on R+x R+, except possibly at the points (0,=) and («,0);

5) L is associative;

6) L is Archimedean, i.e., for all u € (0,=), L(u,u) > u.

First, we give some simple results which are needed in the sequel.From Theorem
5.7.4 in [5], it is easy to know that there exists an additive generator g of L,i.e.,
a strictly increasing and continuous function g: R+-> R+ with g(0) =0, g(«) = = such
that L(x,y) = g (g(x) + g(y)), x, y € R+

Now, we choose a fixed additive generator g of L, and note that the particular
choice of g does not affect the validity of our results.

+ + +
DEFINITION 1.1. *L: R xR +R 1is defined as

- +
o x =g l(Cng(x)), a, x € R .
Clearly, a*sumx = X, a X €R+.
LEMMA 1.1. For any a, B, x, y € R+, the following equalities hold.

1) d*L (B"Lx) = (aB) *Lx (1.5)
(i1) d‘L L(x,y) = L(a*Lx, d*Ly) (1.6)
(iii) (a+B) *Lx = L(cPLx, Q*Lx) (1.7)

+
Clearly, if a €(0,®), then f(x) = oﬁLx, x&R 1is strictly increasing and continuous.

So we may give

DEFINITION 1.2. For any a€(0,«), x€ R+, x&La is defined as the only solution of
the equation o*Lt = X.

LEMMA 1.2. For any a,B€ (0,«), x,y€ R+, the following equalities hold.

1) (dea) 6.8 = x§ (aB), (1.8)

(11) L(x,y) §a=L ( x6§ a y&La). (1.9)
DEFINITION 1.3. q‘: (0,=) x ats s 1s defined as
&Lp = F(j5, ), a€(0,=), Féa'.
In particular, @suml’ =apF, a€(0,»), rea'.

+
LEMMA 1.3. For any a, BE(0,=), xeR+, F, GEA , the following equalities hold.

) B =y (1.10)
(11) o® (BB F) = (BB F, (1.11)
(111) &LtT’L(F,G) - TT’L(OOLF, o 6). (1.12)
COROLLARY 1.1. (cf. Lemma 15.1.3 in [5]) For any a&(0,=), F, G& A",

T, (Fi6) = 1y (Fla* 1), G(a*(1))(14a), (1.13)

i.e., TT,L is homogenous in the sense of (1.13).

DEFINITION 1.4. For any x, y€ [0,=) with y < x, x; ~y 1s defined as the only
solution of the equation L(y,t) = x.

DEFINITION 1.5. For any a, bEI,

ao.rb = Sup{x'T(b,x) <al.
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LEMMA 1.4. For any a,b,c, a)‘, bx(xe[\)é I,

(1) T(a,b)o,r a»b, (1.14)
(ii) If a < b, then aqe < bqrc, carbsca,ra, (1.15)
(iii) aap inf bA > Sup(aa,rbx), (1.16)
AeA AeA

a Sup b, = inf (aa.b.), (1.17)

b A€ A€l r A

inf a_ob = inf (a_a.b), (1.18)

Aeh )‘“r AeA xaT

Sup a_ a.b > Sup (a a.b). (1.19)

wer NT T Gah AT

+

DEFINITION 1.6. : atx a* 5 1} 1s defined as: for all F, G €G,

"TL

(F“P,LG)(X) = [inf {F(u)qu(v)qu v=x, v<u, u, vé€[0,=)}, x€[0,=);
1, X = oo,

It is easy to check that for any F, G€.A+, F“l‘ LG is left-continuous and
’
increasing, but it is possible that (F"T 1(})(0) > 0. In addition, from Lemma 2.4.
’
(i1), we know that n T.L is increasing in the first place and decreasing in the second
’

place.
LEMMA 1.5. For any F, G€A+,
L (F,G)n T,L’ G > F, (1.20)

2. PROBABILISTIC SEMINORMS AND NORMS UNDER tT,L
DEFINITION 2.1. Let V be a vector space over the field K of real or complex
numbers, v: V » A+. Then (V,v) is called a PSN space under T‘l‘,Lif for all p, q € V,
a € Kwith o # 0, the following conditions hold.

1) wWo) = € (2.1)

11) W) = |of 8 wp), (2.2)

(1i1) wWp+q) > L (v(p), Wq)). (2.3)
If (V,v) is a PSN space and satisfies: for all p € V,

(iv) Wp) # ¢ if p #0, (2.4)

then (V,v) is called a PN space.
THEOREM 2.1. If (V,v) is a PSN space under oL then for all p, q € V,
’
w(p=q) <M (W(p)n wWq), wgq)n wWp)), (2.5)
T,L T,L

where M denotes the minimum function.
PROOF. From Lemma 1.5, we have

wp) "L wq) > TT,L("(""’)’ wq)) "L wq) > Wp—q)

because Wp) > 1 [ (Wp-q), Wq)).
’
In addition,
wWP=a) = 1@ Wq-p)
= Wq-p)
< Uq) L wp).
THEOREM 2.2. 1In a PSN space (V,v) under Tp L for all ¢ eR+
with center p and radius ¢ of level A Bp(e, A) -’{ql T(v
q

» A¢I, p€V, the ball
_p(e). A) = 1} is convex.
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PROOF. 1If q, q2€ Bp(q,x). t €[0,1], then

(e) = (e)

“tq+ (1-t)q,] - p “t(q,-p) + (1-t)(a,-p)

> 1,1 Oegqop)’ Y(1-t)(q-p) 1D
= SUP {T(\’t(ql_p)(el)) V(l_t)(qz_p)(ez)) l L(ﬁlgtz) = C}

> T(vt(ql_ p)(t*Le), v p)((1-1:) *e)

(1—:)(q2—

= T(vql_p( €)s qu_p(e) )

T[v

(e), X) >T(T(Vql_p(5)’ qu_p(e))’ A)

[tq1+(l—t)q2] - P

= T(\)ql_P(e); T(qu_p(E): A)

= T(\al_p(e), 2)

= x.
THEOREM 2.3, 1In a PN space (V,v) under TT,L’ let
Uy (e ) = {q'vq_p(e) >1-2}, €, A> 0, pe V.
Then the family U'{vp(e,x)le >0, A> 0, peV} generates a Hausdorff topology T which
is called the strong topology of V. Moreover,
(1) +: Vx V »V, (p,q) » p+q, p, q€V is continuous;
(2) If Ran vQD+, then.: k xV + V, (a,p) + oP, a€R, p€V is continuous,

where 0¥ = {F5A+| sup F(x) = 1};
+ x<o
(3) v V>A, p+ Wp), p €V is continuous.

PROOF, Straightforward.
To illustrate that the condition in Theorem 2.3. (2) is necessary, we give
EXAMPLE 2.2. Let v: R » 4

€ if x = 0,

’

e, if x #0 .
N FR, D)
Then (R,vo) is a PN space under TpoLe However, 1/n » 0, but 1/n ==—"25 0
, L
does not hold.
THEOREM 2.4. 1If (V,v) is a PSN (or PN) space under 7, ., &: VX V » o' 1s
’
defined as

v (x) =

F(p,q) = v (p-q), P, q€V, (2.6)
then (V,F) is a PPM (resp, PM) space under Ty which has the following properties:
»
for all p, q, r&V, a€K with o # 0,

1) Flp,a) = |o® Fp,), (2.7)
(1) F(p+r, q+ 1) = F(p,q). (2.8)
Conversely, if (V,F) is a PPM (or PM) space under TT,L with (2.7), (2.8), then there
exists a PSN (resp. PN) space under TT,L such that (2.6) holds.

PROOF. Immediate.

3. L-SIMPLE SPACES.
DEFINITION  3.1. Let (V,||.|[) be a normed space, and GE&™\(e .c ).
Then (V,H.H,G), the L-simple space generated by (V,”.H) and G, is the pair
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(V,v) in which v V » A+ is defined by
wp) = ||p| @6, pEV. (3.1
In Particular, Sum-simple spaces are also simple spaces.
DEFINITION 3.2, Let @ be a class of pairs (V,v) in which V is a vector space, and
w Vs A+ satisfies (2.1), (2.4), and t1s a triangle function. If for any
(V,v) € € it holds that
wpHq) > (v(p), wWq)},p, q9€ V, (3.2)
then t is said to be universal for G.
DEFINITION 3.3. If F, Gé€ _I_\+’ and there exists q€(0,x) such that G = &LF, then
F and G are said to be L-comparable. We write
aL(A+) = {(F,G) € a*x at | F, G are L-comparable}.
THEREOM 3.1. (cf. Theorem 8.4.2, 8.4.4 and Problem 8.8.1 in [5]). Triangle

function t is universal for the class 8L of all L-simple spaces 1if and only

if T'CL(A+)< ‘M,LICL(A+)‘

PROOF. (<{==) First, we show that WL is universal for SL. In fact, if (V,v)
»

is a L-simple space, then for all peV, y€I,
W)t (y) = sup x| wp)(x) < ¥}
sup (x| G(xs | |p|]) < ¥}
sup{| ||| *,z] 6(2) < ¥}
[l pll*LSup{CIG(c) <y}
I ell*ee.
Therefore, from Lemma 1.1. (iii), we obtain that for all p, q€V, y€ I,
wer)h (9) = ||ptal[*,6(0)
<dlef] + [lalb * 600
= L (| |p]|* 6", |la]|*6%n
= L) M), W ro).

and from (7.7.10) in [5], we have

wpta) > (L), W] = g (WR), Wad).

In general, if T'C + , then for any L-simple space (V,v) and for
L

oy 1l
s LY
any p, q€ V,

T (WP)s WQ)) < gy (WP), Wa)).
’

In fact, if p = 0, or ¢ = 0, then T (WpP), Wq)) = Wq) or wWp), and if
p#0andq #0, then ||q||/||p||€ (0, and wa) = |[a]|/|]|p]|@ wp), L.e.,
(Wp), \)(q))CCL(A+). Consequently, 1 is universal for SL because so is tH,L.
(==>). If tlc + < tH,L'CL + does not hold, then there exists a pair
(6,F)€ C (") such that <(G,F) & g, (G.F). Because t(e,,F) = 3 (e, ,F) = F, we have
and 1( e“»l?) =€, that Gf {eo,ew}. Now, we consider the L-simple space

(R,v) = (R,'.I, G) generated by the real line with the usual norm and G. Since
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(G,F)€ G (A ), there exists u€ {!'.=) such that F = "LG' In

addition, from t(G,F) < 1 M L(G'F)’ we know that there exists xoé (0, ») such that
’

T(G,F)(xo) > (G,F)(xo), and furthermore

™,L
(WD, A@) (x) = (A1), o W1))(x)
= G,F)(x,)

> 1y, 1(GF)(x)

Sup M(G(u), F(v))|L(u,v) = x_}

> M(6(x 8 (1+a), F(a* (x 8§ (1+a)))

= G(x & (1+a)

W1+ (x )

because

and

Lix, 8, (1+a)), a* (x & (1+a)) = (1+a) * (x & (1+a)) = x_

FCa* (x 8, (1+0)) = G ((a* (x &(1+a)) 6 a)
= G (x 6 (1+a).

This contradicts (3.2).

COROLLARY 3.1. Any L-simple space is a PN space under 1.[ L

Let (V, H ”) be a normed space, a €(0,=) and GGA \[s e }. By the a -simple
space generated by (V, ” “) and G, (V, ” II G,a), we mean the pair (V,v) in which
v Vs A+ is defined by w(p) = G(s/ll p”“). pév.

The following corollary characterizes o -simple spaces.
COROLLARY 3.2, (cf. Problem 8.8.2 in [5]) For q€&(0,«), any a -simple space

is a PN space under “H’

-simple spaces are also Kl/u -simple spaces.

3.

4,

PROOF. It is sufficient to note that x&x a = x/a% x, a€(0,»), and 80 a

1/a
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