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ABSTRACT. In this paper we establish a continued fraction represetatlon for the ratio

qf two basic bilateral hypergeometrlc series 22 s
which generalize Gauss’ continued

fraction for the ratio of t: 2FI ’s.
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INTRODUCTION.

Gauss (see Wall [3] and also Jones and Thron [2], gave the following continued

fraction involving the ratio of two Gausslan 2Fl’s,

F[a’b+l;Zc+l ]/F[a’b;Z]c (1.1)

where

a(c-b)z/c(c+1)
1- (b+l) (c-a+l)z/(c+l) (c+2)
I- (a+ I) (c-b+ 1) z{(c+2) (c+3)-
1- (b+2) (c-a+2)z/(c+3) (c+4)
1-

2F [a,;T =o [l]n[Y]n

in which the symbol [a]n stands for a(a+1)(a+2)...(a+n-1) and [a] I.

In this paper we establlsh the continued fraction for the ratio

22 ,Y 22 ,Tq

where

[a] [Sl x
n

2)2 , []n [’f]n
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where
n-I[=] _-- [a;q] (1-a) -aq ). (l -aq ),[a] .

n n o

The other notations appearing in this paper carry their usual meaning.

2. MAIN RESULT.

In this paper we establish the following result

xB xD B xD xB
2

Ao / Co / AI / CI / + C2 +

where for i O, I, 2, 3,

A
i

(l_Sql) (_y21+l 6)

(l_Tq2i)(qi+l 6)

B
i

qi+l_ :(l_.qi) (l__ql) (_yql)
2i+1) 2i) i+l-q (I -Yq q 6

CI
,(I-Ri) (yq2i+2 6)

(l-q2i+l)(aqi+l 6)

and

D
i

i+ _qi+ i+l
q I(I l)(l-aqi)(a-yq _)

2i+1 (l_Tq2t+2 (1t+1(i-Vq 6)

PROOF of (2.1). It is easy to see that the following relation is true (for non-

negative integral t),

i,i;x22
2i J6, q

+ xB
i 2P2Ai 22

2i+1 2i+2, Tq 6 Tq

(2.2)

No, interchanging a and in, (2.2) avd then replacing B by q and T by Yq in it,

we get i i+l

2r2 21+16, Tq

Ct 22 + xDt 2q2
21+6 Tq

2t+2 yq

(2.3)
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Now from (2.2) for i o, we get

22 6 ,-f
22 q

A +

22 6,Yq , Tq

A +
xB

xD

from (2.3) with

A +
xD

A +

from (2.2) with i

6 Tq3 2J2 , yq4

xB xD xB xD xB
o o 2

o + C + A + C + A
2

+ C
2o

(by repeated application of (2.2) and (2,3)). Tfs proves (2.1).

3. SPECIAL CASES.

Here we shall reduce certain interesting special cases of (2.1).If in (2.1) we

take 6 q, we get

2
Yq

xv xrl xv x2xl
o

1+ + + + + + + (3.1)

where for i O, I, 2,

and

t 21+1
Pt q (1-Cl t) (Yq t-I) / (1-’Yq 2t) (1 -’Yq

t i+l t+1 2t+1) 21+2v
t q 1-6q Yq -) / -q -yq ).

If q in (3.1), we get (I.I), the continued fraction of Gauss.

If in (3.1) we take 6- and replace Y by Y/q, we get,
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v xB xvBo o
+ + + + + +

where for O, l, 2,

and

i i) i-I 2i-1 2i
B i

q (1-cq (l-Yq )/(1-Yq )(1-yq

i i+l i 2i) 2i+1v
i

=q (1-q )(1-yq /oO/(1-yq (1-yq

Now, if in (3.2) we let q I, we get the following known result [2]

I; x 1
x n x xn x2o o

-"

where for I O, I, 2,

(3.2)

(3.3)

and
i (’+i) (Y+i- 1) / (+2i- 1) (y+2i)

"i (i+ 1) (-c+i) / (+2i) (+2i+ 1)

If we put Y o in (3.2) and replace x by xq/e and then let s (R), we get the

following interesting result

v n n(n+l)/2 n(-)L q x
n,o

3 5
x_x_q_ _xq(q_ 1) x_x_q_ xq2(q2-1)_ z_R_ xq3(q3-1)

+ + + + + + + (3.4)

If we take Y q in (3.2) we get a continued fraction representation

for i#o is; x] which, when q I, yields the continued fraction representation for

general binomial (l-x)

2
Again, if we take a q, y q and replace x by -x in (3.2), we get a continued

2
fraction representation for 2#i [q,q;q ;-x] which, when q yields the continued

fraction representation for

xl log (l+x) F [I,12; -x]
Similarly, we can get the continued fraction representation for

(l+x) I1/2, ;x]log 2x F
3/2
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Further, if we take o in (3.1), we get the following result after some

s impliflcatlon,

where for i O, I, 2

and

i 2i) 2i+1
i q (q -)/(1-q (1-q

2i+I i+l 2i+l) 2i+2v q 1-Sq 1-q -q

The above (3.5) is the q-analogue of a known result [2].

Again, setting S in (3.5) we get the continued fraction representation for

q;x] from which one can, for =I, deduce the corrsponding continued fraction

expression for q-exponential function eq(x) which in turn yields the continued

e
z

raction representation for exponential function when q [2].

A number of other interesting special cases could also be deduced, The reader is

referred to Wall [I] and Jones [2].
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