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ABSTRACT. In this note, we show when all solutions to the nonlinear differential

equation x" + c(t)f(x)g(x’)x’ + a(t,x) 0 are bounded. Furthermore, the solutions

are either oscillatory or monotonic and asymptotically stable.
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INTRODUCTION.

In thls note, we shall discuss under what conditions all solut{ons to the second

order nonlinear differential equation,

x" + c(t)f(x)g(x’)x’ + a(t,x) 0 (I.I)

are bounded and are either oscillatory or monotonic and approach 0 along with their

derivatives as t =. By oscillatory, we shall mean a solution equaling 0 for

arbitrarily large values of t. The above equation is a generalization of the well-

known Lidnard equation (see, for example, Struble [I, p. 164-166] and Utz [2] for some

classical results and Kroopnick [3] and Heldel [4,5] for some more recent though less

general results to this type of equation). We now state and prove our main result.

2. MAIN RESULTS.

THEOREM 2. I. Given the differential equation (l.I). Suppose C(.) C[O, ==) and

is positive on [0, (R))with c > c(t) > 0 for some positive constant c and a(t,x)
continuous on [0, =) x R with xa(t,x) > ao(t)Ixl p for x 0 (p I), ao(t) positive

and continuous on [0, =) and ao(t)dt + (R). Furthermore, suppose x a(t,x) 0,
o
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a(t,x) dx + uniformly in t and left [(.), g(.) be non-negatlve continuous
x
o

functions on R. Then all solutions to (I.I) are bounded and are either oscillatory or

monotonic and approach 0 along with their derivatives as t -.
PROOF. From standard existence theory, we know that a solution exists on the

interval [O,t) for some t > O. All we need to show is that the solution stays bounded

and, therefore, it may be extended for all t > 0. Now, multiply (I.I) by x’ and

integrate from 0 to t by parts in order to obtain the following,

(2.1)

(just differentiate (2.1) using Leibnlz’s rule to get back to (I.I)). Should x and x’

become unbounded then all terms on the LHS of (2.1) become positive and, furthermore,

the LHS of (2.1) becomes unbounded which is impossible since the RHS of (2.1) is

constant. A standard argument now completes the proof that x(t) may be extended as a

bounded solution for all t > 0.

Next, suppose x(t) does not oscillate, then x(t) must eventually be of fixed sign

for t > > 0. Assume x(t) > 0 for t > (a similar argument works for x(t) < 0).

Also, x’(t) must be of fixed sign. Otherwise, x(t) will have an infinite number of

consecutive relative maxima which Is impossible if x’(t) 0 infinitely often. In

order to see this,-suppose x’(t I) and x’(t2) are consecutive zeros of x’(t). Then

x(t I) and x(t 2) are consecutive relative maxima of x(t) since x"(t) < 0 at these

points from (I.I). Also, the sign of x’ does not change on [tl,t2]. Furthermore, we

have x"(to) 0 where t < to < t 2. Should x’(to) > 0 then from (I.I) we have that

x"(t < 0 which is impossible. If x’(t < 0 then x’ is negative on (t!,t 2) since
o o

x’ does not change sign on [tl,t2]. However, if this is the case, then x(t) does not

possess a relative maximum at t t 2. This contradiction establishes that x’ must

eventually be of fixed slgn.

Since x(t) is positive, nonosclllatory and bounded, x’(t) must approach 0

as t . Should x(t) itself not approach 0 as t , then we have x’(t) as

t . This follows from (I.I) when we Integrate (I.I) from t to t, i.e.,

t t
x’(t) x’() - c(s)f(x(s))g(x’(s))x’(s) ds a(s,x(s)) ds (2.2)

which diverges when x(t) approaches a positive limit. Note that the middle term of

the LHS of (2.2) is bounded by 2KMc where M is a bound for f(x(t))g(x’(t)) and K is a

bound for x(t) for t c [0,+) so it cannot cancel out the third term of the RHS of

(2.2) which diverges as t / (R).
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We have essentially shown that the bounded solutions to (I.I) behave very much

like those of x" + cx’ + ax 0 where a and c are positive constants, an observation

similar to one made by Utz [2].

EXAMPLE 2.1. Consider the nonlinear differential equation

2m+l 2n+!x" + cx’ + ax 0 (m and n are positive integers). (2.3)

We readily see that all solutions to the above are bounded, oscillate or approach 0

from our theorem.
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