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ABSTRACT. The main result is that a square matrix D is convergent (lim D" 0) if and

only if it is the Cayley transform C^ (I-A)" (I+A) of a stable matrix A, where a stable matrix

is one whose characteristic values all have negative real parts. In passing, the concept of

Cayley transform is generalized, and the generalized version is shown closely related to the

equation AG + GB D. This gives rise to a characterization of the non-singularity of the

mapping X AX + XB. As consequences are derived several characterizations of stability

(closely related to Lyapunov’s result) which involve Cayley transforms.

KEY WORDS AND PHRASES. Stable matrix, Cayley transform, convergent matrix.

1980 AMS SUBJECT CLASSIFICATION CODES. 15A04, 15A24

Both Taussky and Stein [Stein, 1965] have written on the connection between stable

matrices and convergent matrices. The link joining the two is the Cayley transform: a matrix is

convergent it is the Cayley transform of a stable matrix (theorem 8).

Cayley transforms are introduced by considering the matrix equation AX+XB C. But

first a lemma:

Lemma 1" Over field F let matrix A be nxn and let x be either indeterminate over F

or in F but not a characteristic value of A. Then

(xl-A)-’(xl+A) (xl+A)(xI-A)k (I)

If either expression in (1) is denoted by CAx then CA,=C,. If x ,, 0, then

A x(CAcI)(CA,+I)1. (2)

Proof: Since x is not a characteristic value of A, (xI-A) exists. (1) follows from

(xl+A)(xI-A) (xI-A)(xl+A). (3)

Before (2) can be derived, the non-singularity of CA, + must be proven. This

equation holds:
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CA, + (xI+A)(xI-A)" + (xl-A)(xI-A)"

2x(xl-A)-.
Therefore, CA + I[ 2xlxI-Al" , 0 since x , 0 and IxI-A[ , 0 (for xI-A is non-singular);

hence, CA, + is non-singular. (2) then follows directly. QED

CA. of (1) is the generalized Cay!ey transform of A. If x is not a characteristic

value of A, then CA, is the Cayley. transform of A; it will be denoted C^. Note that the

mapping A-*C^ is bijective from the set of matrices having no characteristic value onto

those having no characteristic value -1, the inverse transformation being determined by (2).

Theorem 2": Let matrix A be mxm, G and D be mxn, and B be nxn, all with entries in

field F.

AG+GB D G-CA’XGCB,x -2x(xI.-A)lD(xI.-B)1, (4)

where x is either indeterminate over F or in F but ,., 0 and a characteristic value of neither A

nor B.

Proof: x satisfies the requirements for CA, and Ca"x to exist, according to the lemma,

and the dimensions of CA, Ca,x, (xtm-A)", and (xI,-B)a are such that the expression on the

right of (4) is well-defined.

AG+GB D

(xO-AO)(xl.-B) (xG+AG)(xI.+B) -2xD

(xl.-A)G(xI.-B) (xI.+A)O(xI.+B) -2xD

G-(xI.-A)"(xI(R)+A)G(xI.+B)(xI.-B)* -2x(xI.-A)ID(xI.-B)

G-CA,xocB; -2x(xl.-A)"D(xI.-B)" QED

One consequence of the preceding theorem is the celebrated result that every properly

orthogonal’" matrix P can be expressed as P (I+K)(I-K), where K is a real skew matrix. To

derive it, in the theorem let F real number field, G I, D O, x -1, and B A’.

Then it follows that A+A’ 0 PP’ I, where P (-I-A)(-I+A) (I+A)1(I-A), the

relationship between P and A being determined by (1) and (2) of the lemma (cf. the remark

on the bijective character of A-,C^). Likewise the Cayley parametrization of unitary matrices

follows [Gantmacher, Vol. I; p. 279 (95)].

Over a field F let A be an mxm matrix, X an mxn matrix and B an nxn matrix. Let

ZA,B AX + XB. Clearly the mapping ZA,B: X-AX + XB is a linear transformation on the

"This theorem generalizes a lemma of Weyl’s [Weyh p. 57, lemma (2.10.A)].

"’An orthogonai matrix is proper none of its characteristic values -1.
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linear space of mxn matrices. Denote .tA,A. by .tA: .tA(X) AX + XA*, where all matrices arc

of the same dimension.

Corolla 3: Let A, B, G, x, and F be as in theorem 2. Then the mapping

G-G-C^.xGCaa is linear from the set of all mxn matrices into itself. This mapping is non-

singular ,t:A, is non-singular.

Proof: The linearity of the mapping is obvious. ,tA,a is non-singular for cvery D

there exists a solution of AX+XB D =, for every E there exists a solution of X-CA.xXCa
E (thcorem 2 and the non-singularity of xI,-A and xI-B) the mapping G-,G-C^.xGCt. is

non-singular. QED

In the rest of this article, let F be the field of complex numbers and let all matrices be

square.

The inertia of an nxn matrix X is the ordered triple of integers 0r(X), ,(X) 6(X))

In(X), where n(X) is the number of characteristic values of X whose real parts are positive,

,(X), the number whose real parts are negative, and a(X) the number whose real parts are 0.

Corollary 4: If A has no characteristic value =1, then In(I-CACA*) In(-(A+A*)).

Proof: CA. CA* by a slight modification of lemma 1. In theorem 2, let B A*, G

I, and x 1; thcn D A+A*. Therefore, I-CACA* I-CAICA. -2(I-A)1(A+A*)(I-A*)1

(I-A)"[-2(A+A*)][(I-A)1]*. Since the last expression is congruent to -2(A+A*), their

inertias are the same, and In(-2(A+A*)) In(-(A+A*)). QED

A square matrix is stable all its characteristic values have negative real parts. S

denotes the set of all stable nxn matrices, II denotes the set of all positive-definite hermitian

matrices and h/denotcs the set of all negative-definite hermitian matrices.

Theorem 5: A S for any G,II there exists G II G-CAGCA* G

there exists G1II G-CAGCA* G1 for some G rl.

Proof: In theorcm 2, let B A*, x (for is not characteristic of a stable matrix

and CA presupposes that x ,, 1), and D -Y2(I-A)G(I-A*). Then the last term of (4) is G,

and (4) becomes

AG+GA* D G-CAGCA*

D is hermitely congruent to -V2G, and so In(D) In(-V2G0. Therefore, GII D

First equivalence: Assume A S. For any G,II, D tO. Therefore, "qG rI: AG+GA*

D [Taussky], so G-CaGCA* G. Conversely, if for any GII there exists G rI:

G-C,xGCA* G,, thcn AG+GA* D; since Gt is arbitrary, so is D, for I-A and I-A* are non-
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singular, otherwise C^ and Ca* CA. would not be defined. Since D tO, A S [Taussky].

Second equivalence: Assume A S. Then 3G elI: AG+GA* D for some D

and so G-C^GC^* GI; Gleli as above. Conversely, if, for some GtelI, G-C^GC^* G1 for

someG eli, thenAG+GA* DandD eh/. Hence, A eS. QED

Corollary 6: A S -qG eli: I-diag(g g,) eli, where {g} are the roots of

xG-C^GC^* 0; furthermore, & is real (i=l n).

Proof: Assume A S. By the first equivalence of the preceding theorem 3G eli:

G-C^GC^* I. Since both G and C^GC^* are hermitian and G eli, 3R: R is non-singular

and R’GR I, R’(C^GC^*)R diag(g g,,) where {g} are the roots of xG-C,,GC^*I 0.

Then R’R R’IR R’ (G-C^GC^*)R R’GR-R’(C^GC^*)R= I-diag(g g.). R’ R eli

because R’GR R"IR" G eli RR’ li R’R eli. Therefore, I-diag(g, g.) II.

Since G and C^GC^* are hermitian and G eli, 3R: R is non-singular and R’GR I,

R’(C^GC^*)R diag(gt g,,) where {g} are the (real) roots of xG-C^GC^*I 0. Then

R "t[I-diag(g ,g,)]Rq R "RI-R "ldiag(g g,)R1 G-C^GC^* eli. By the second equiva-

lence of the preceding theorem, A S.

g, is real (i= n) [Gantmacher, Vol. I; p. 338, thm. 22]. QED

Corollarvfl7: A eS "q G eli: g < (i=l ,n) where {g} are the characteristic

values of G’C^GC^*.

Proof: In the preceding corollary, G is non-singular since G ell. Hence, {g,}, the roots

of xG-C^GC^*l 0, a the characteristic values of GtC^GC^*, for I,G-C^GC^

GI. x-G-C^GC^*l 0. I-diag(gt g,,) eli is equivalent to i-g, > 0 (i-1 n). QED

The algebraic properties of the Cayley transform previously developed will be applied to

prove theorems about convergent matrices.

The nxn matrix A is convergen.t lim A" 0.
m-,

Theorem 8: D is convergent ,=, 3 A S D Ca.

Proof: D is convergent D* is convergent.

Assume that D is convergent. Then D* is convergent. By Stein’s theorem [Stein,

1952; p. 82, thm. 1] (-G eli)(-GelI) G-DGD* Gt. Define A by A (D-I)(D+I); then

D Ca. By theorem 2, AG+GA* -1/2(I-A)G(I-A*). Since -1/2(I-A)G(I-A*) is hermitely

congruent to -G, AG+GA* h/and by [Taussky] A

Assume that A S. Then by theorem 5, (qG elI)(qGII): G-C^GC^* G. By
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Stcin’s theorem, Ca* is convergent, and so C^ is convergent. QED

Corollary 9: D is convergent (vGtII)(3GalI): G-DGD* G,

(3Gt,II)(IG,II): G-DGD* Gt.

Proof: By the preceding theorem, D is convergent D C^, where A S. The two

equivalences follow from this fact and theorem 5. QED

The preceding corollary is a theorem of Taussky’s [Taussky; p. 7, thm. 5], which is itself

a strengthening of Stein’s theorem.
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