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ABSTRACT. Let f:[0,1]xR 4 ---R be a function satisfying Caratheodory’s conditions and

e (x) L [0,1]. This paper is concerned with the solvability of the fourth-order fully quasilinear boundary

value problem

d4u
+f(x,u(x),u’(x),u"(x),u’"(x))=e(x), 0<x < 1,
dx4

with u (O)-u (1) u "(O)-u "(1) u"(O-)-u"(1) u ""(0)-u ""(1) 0. This problem was studied earlier by

the author in the special case when f was of the form f (x,u (x)), i.e., independent of u’(x), u"(x), u’"(x).

It tums out that the earlier methods do not apply in this general case. The conditions need to be related to

d4u d4u 2 d2u
both of the linear eigenvalue problems

dx
k4u and

dx4 - with periodic boundary condi-

tions.
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dary conditions, Leray Schauder continuation theorem, Fredholm operator of index zero, compact perturba-
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1. INTRODUCTION
Fourth-order boundary value problems arise in the study of the equilibrium of an elastic beam under an

external load. There arise several different fourth-order boundary value problems depending on how the

beam is supported at the end points [4]. Such problems have been studied extensively in recent times.

(See e.g. [1-11].) The purpose of this paper is to study the fourth-order fully quasilinear bounda,’3" value

problem with periodic boundary conditions

d4u
dx4

+f(x,u(x),u’(x),u"(x),u’"(x))=e(x), 0<x < 1, (1.1)

u(0) u (1) u’(0) u’(1) u"(0) u"(1) u"’(0) u’"(1) 0, (1.2)

where f [0,1]xR 4 R is a function satisfying Caratheodory’s conditions and e (x) e L [0,1 ]. The boun-

dary value problem (1.1)-(1.2) was studied earlier by the author in [6],[7] in the case where f in equation

(1.1) is independent of u;u’;u"; that is, f is of the form f(x,u(x),u’(x),u"(x),u’"(x))=-f(x,u(x)).
However, the methods of [6],[7] do not apply to the more general boundary value problem under considera-

tion in this paper. One needs to show that the set of solutions of the family of homotopy equations for the

boundary value problem (1.1)-(1.2) is, a priori, bounded in C3[0,1], while the methods of [6],[7] can at
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best give a priori bounds in C2[0,1]. It turns out that the conditions on the nonlinearity f (x,u,u" u’" u"’)

are related to both of the following linear eigenvalue problems:

dnu _,4u, O<x<l, (1.3)
d4

and

d4u , du
0 < x <

dx4 d2

with u satisfying the periodic boundary conditions (1.2). (1.4)

We use the classical spaces C [0,1], Ck[0,1], and Lk[0,1] of continuous, k-times continuously

differentiable, or measurable real-valued functions, the k-th power of whose absolute value is Lebesgue

integrable. We also use the space W (0,1) defined by

W:’ 1(0,1) [u" [0,1] R
dju

absolutely continuous
t

1] for j =0,1 k- }on [0,

with the norm II u II w. for u W (0,1) defined by

k
Ilu IIw. Ilu (i) IlL

2. MAIN RESULTS
Let X, Y denote the Banach spaces X C3 [0,1], Y L (0,1) with their usual norms, and let H denote

the Hilbert-space L (0,1). Let Y2 be the subspace of Y defined by

Y2 {u Y u constant a.e. on [0,1]},

and let Y be the closed subspace of Y such that Y Y Y2. (Here and in the following, the symbol
denotes the direct sum.) We note that for u Y we can write

u (x) u (x) Iu (t)dt + Iu (t)dt,
o o

for x [0,1 ]. We define the canonical projection operators P" Y Y 1" Q" Y Y2 by

t" u u (x u )dt
o

a u u )dt
o

for u Y. Clearly, Q l-P where ! denotes the identity mapping on Y, and the projection operators P,Q
are continuous. Now let X2 XcYg_. Clearly X is a closed subspace of X. Let X1 be the closed sub-

space ofX such thatX =X X. We note that P IX:X --X, Q:X --X are continuous. Similarly,
we obtain H HlOH2 and continuous projections P IH: H ---) H, Q IH: H --) H:z. In the following, we
shall not distinguish between P, P IX, P IH (respectively, Q, Q IX, Q I/4) but depend on the context for the

proper meaning.
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For u X, v Y, let (u,v) u (x)v (x)dx denote the duality pairing between X and Y. We note that
0

for u X, v Y, so u Pu + Qu, v Pv + Qv, we have

(u,v) (Pu,Pv) + (Qu, Qv)

Define a linear operator L" D (L) cX --+ Y by setting

[u W4’1(0,1) u(0) u(1), u’(0) u’(1),D(L)

tu"(0) u"(1), u’"(0) u"’(1)

For u D (L),

d4uLu --. (2.2)

Now, for u D (L) we see, using integration by parts, that

d4u
(Lu, u") J0 dx--u "(xldx I(u’"(x))2dx"o

(2.3)

For a given h L(O, 1) with h(x)dx O, where h Y, we notice that there exists a unique
0

u X D (L) such that Lu h. Indeed, the unique u is given by

u(x) Cl + Cx + Cx + C4x3 + [.(x-t)h(t)dt (2.4)

where C2,C,C4 are obtained from the following three linearly independent equations:

C2 +C3 +C4 -!(1-t):(t)dt,
It

2C3 + 3C4 J(1-t)2h(t)dt’-o
6C4 -I(l-t)h (t)dt. (2.5)

0

C is computed (uniquely) from the requirement that u X i.e., lu (t)dt 0. Accordingly, the linear

mapping K: Y X defined, for h Y I, by Kh u, where u is given by (2.4)-(2.5), is a bounded map-
ping. It is easy to see, using the Arzela-Ascoli theorem, that K:Y -- X is a compact mapping; i.e., K
maps bounded sets in Y into relatively compact sets in X I. Further for u D (L), Lu . YI, KLu Pu
and for h YI, Kh e D (L), LKh h.

DEFINITION 1. A function f" [0,1]xR R is said to satisfy Caratheodory’s conditions if the following
conditions are satisfied:

(i) for a.e.x [0,1], thefunction y e 1 " f (x,y) e I?, is continuous;

(ii) for every y R, thefunction x [0,1] --> f (x,y) R is measurable;
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(iii) for every r > O, there is a real-valuedfunction gr(x) L 1[0,1] such thatfor a.e. x [0,11,

If (x,y) < gr(X) whenever Ilyll < r.

If the function gr(x) in condition (iii) is required to be in L z(0,1), we say that the function f satisfies L z-
Caratheodory conditions.

Next, let f" [0,1]xR 4 ---> R be a given function satisfying Caratheodory’s conditions. We define a

(nonlinear) mapping N" X --> Y by setting

(Nu)(x)= f (x,u(x),u’(x),u"(x),u’"(x)), x [0,1], (2.6)

for u X. We see that KPN" X --4 X is a well-defined compact mapping and QN" X ---> X2 is a bounded

mapping.

For e(x) Y L l(0,1), the boundary value problem (1.1),(1.2) reduces to the functional equation

Lu + Nu e, (2.7)

in X with e Y given.

THEOREM 1. Let f" [0,1]xR4--> R satisfy Caratheodory’s conditions. Assume that there exist real

numbers a,A,r,R with a < A and r < 0 < R such that

f (x,u,v,w,y) > A (2.8)

for a.e.x [0,1], all (v,w,y) R3, and all u > R. Further assume that

f (x,u,v,w,y) <_ a, (2.9)

for a.e.x [0,1], all (v,w,y) R 3, and all u < r. Suppose that there existfunctions a(x),b(x),c(x),d(x)

in L (0,1) and afunction t(x) L (0,1) such that

f(x,u,v,w,y)w a(x)w2 +b(x)luwl +c(x)lvw +d(x)lyw +ct(x)lw (2.10)

for a.e.x [0,1] and all (u,v,w,y) R4 with

4t2-II a I!** +(2x + -)lib I1,, + 2:11 c II** + 8t3f’lld I1.. < 16-:4 (2.11)

Suppose, further, there exists an L2-Caratheodory function I: [0,1]xR 3 -->R and a function
x) L 1(0,1) such that

If (x,u,v,w,y) < (x,u,v,w)ly + (x) (2.12)

for all (u,v,w,y) R4 and a.e. x [0,1]. Then the boundary value problem (1.1)-(1.2) has at least one

solutionfor each given e (x) L (0,1) with

a < Ie(t)dt <A. (2.13)
0

Proof Definef" [0,1]xR 4
_
R by

fl(x,u,v,w,y) f (x,u,v,w,y) (A +a),

and e L l(0,1) by e (x) e(x) -(A +a) so that for a.e. x [0,1] and all (v,w,y) R3, we get, using

(2.8),(2.9),

f (x,u,v,w,y) >_ 1T(A -a) 0 if u >_ R, (2.14)

fl(x,u,v,w,y)< -(a-A)SO if u <r,
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and

(o-A) < I (t)dt -< (A-o). (2.16)
0

Also, fl (x,u,v,w,y) satisfies (2.10) with (x) rep|aced by =I (x) (x)+ IA +o I. C|early, the boundary

value problem (I.I),(1.2) is equiva|ent to

+ Yl (x,u (x),u (x),u(x),u(x)) (x), 0 < x < ,
u(0) u(1), u’(0) u’(1), u"(0) u"(1), u"’(0) u"’(1). (2.17)

Let N" X Y be defined by

(Nu)(x) f(x,u(x),u’(x),u"(x),u"’(x)), x [0,11, (2.18)

for u X. Then KPN" X -- X is a well-defined compact mapping, QN" X -4X is bounded, and the

boundary value problem (2.17) is equivalent to the functional equation

Lu + Nu e, (2.19)

in X with el Y. Letting b"l KPel, -l Qe, we see that (2.19) is equivalent to the system of equa-
tions

Pu + KPNu "l

QNu e (2.20)

uX.
Now, (2.20) is clearly equivalent to the single equation

Pu + QNu + KPNu ’ + (2.21)

which has the form of a compact perturbation of the Fredholm operator P of index zero. We can therefore

apply the version given in [12] (Theorem 1, Corollary 1), [13] (Theorem IV.4), or [14] of the Leray-
Schauder continuation theorem which ensures the existence of a solution for (2.21) if the set of solutions of

the family of equations

eu + (1-.)Qu + kQNu + LKPNu l + ),- (2.22)

is, a priori, bounded in X by a constant independent of (0,1). Notice that (2.22) is equivalent to the

system of equations

Pu + )KPNu l

(1-.)Qu + .QNu l, k (0,1). (2.23)

Let u X be a solution for (2.23) for some . (0,1). The second equation in (2.23) can be written as

(1-,)fu (t)d/+ .ffl (t,u (t),u "Ot),u"(t),u"’(t))dt .fe (t)dt.
0 0 0

Thus, flu(t) >R for 6 [0,1], then using (2.14),(2.16), we have

0 < (1-.)R + --(A-a) <_ (A--a),

which implies

a contradiction.

0 < (1-k)R _< 0
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that

Similarly, u (t) < r for [0,1] also leads to a contradiction. Hence, there must exist a x 10,1 such

r < u (x) < R. (2.2a)

Now, for x [0,1 we have

u (x) u 0:) + u’(t)dt

It follows that

ix

IIQull Iu(x)dxl <_ lu(x)l + IIIu’(t)dtdxl
0 ox

< max(R,-r) + 1(x3/2 + (1-’1:)3/2) u’ll 2

< max(R, -r) + II u’ll 2
/3

< max(R, -r) +
4/t2- II u"’ll 2, (2.25)

since max/x3/2 + (1-’1:)3/2 ’1: [0,1]} and Ilu’ll 2 < -- Ilu"l12, Ilu"l12 < - Ilu’"l12, in view of

the Wirtinger’s inequalities. Next we apply L to the first equation in (2.23) to get

Lu + LPNu kPel (2.26)

Adding the second equation in (2.23) to (2.26), we get

Lu + (1-:k)Qu + )dVu ke

which can be written as

d4u
dx4

+ (1-,)Qu + .fl(x,u(x),u’(x),u"(x),u"’(x)) l(X), (2.27)

for x (0,1) with u satisfying the boundary conditions (1.2). Next we multiply (2.27) by u"(x) and then

integrate the resulting equation over [0,1]. This gives

lf d4u ,if (x,u (xl,u0 j u "(x)dx + "(x),u"(x),u’"(x))u"(x)dx :ke 1(x)u"(x)dx.
dx4o o o

<_ I(u’"(x))Zdx + :kf[a (x)(u"(x)) + b (x) lu (x)u"(x) + c (x) lu "(x)u"(x)
o o

+ d(x)lu’"(x)u"(x)l + ctl(x)lu"(x)l]dx + ,fle l(x)l u"(x) Idx
0

_<- Ilu-’ll + (lla II**-Ilu"ll 2 + lib I1.. Ilu II 2 + IIc I1.. Ilu’ll 2 + Ildll**llu’"ll2)llu"ll 2

+(11 II + lie1 II 1)llu"ll**
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8/I;3 42

+ Ilbll**llQull’llu"ll 2 + (ilc1 II + lies IIs)llu"’ll 2

_<- Ilu I1+
16:41 4t211all + Ilbll +2:11cll + Ildll Ilu’"l12

max(R,-r) +
4:2

_
Ilu’"ll 2 "llu "’112 + (llct II1 + lie1111)llu’"ll 2+ II b II **"

in view of (2.10), (2.25) and the Wirtinger’s inequalities

IIPu112<11u’112, Ilu’ll 2<llu,’ll 2, IluO’l12<llu"’l12. (2.28)

It follows from (2.11) that there exists a constant C, independent of . (0,1), such that

II u"’ll 2 < C. (2.29)

It is easy to see from (2.25), (2.28) and from (1.2) that there exists a constant C 1, independent of . (0,1)

such that

Ilu IIc2[0.11 < Cs (2.30)

We next use (2.27), (2.12), (2.29), (2.30) to obtain a constant C2, independent of (0,1), such that"

Finally, since u"(0)= u"(1), we see that there must exist a (0,1) such that u"’()= 0. Hence, for
x [0,1],

4

Thus,

II u"’ll < C2 (2.31)

It follows from (2.30),(2.31) that the set ot: all possible solutions of (2.23) is, a priori, bounded in
X C3 [0,1 by a constant independent of (0,1). []

THEOREM 2. Let f- [0,1]><R 4 .i satisfy Caratheodory’s conditions. Suppose that f satisfies conditions
(2.8% (2.9), (2.10), and (2.12) ofTheorem 1, with a (x),b (x), c (x) in L [0,1 and d (x) in L2 [0,1 ], and

4na’- II a II + 3 II b II + 2’4" II c II + 242 II d II 2 < 482
Then the boundary value problem (1.1)-(1.2) has at least one solution for each given e(x) L (0, I),

with

a < e(t)dt <A.
o

The proof of Theorem 2 is similar to that of Theorem 1, except now we need to use the following
Wirtinger-type inequalities,

IIPull**<llu"12, Ilu’ll**<llu"ll2, Ilu"ll**<llu"’ll 2
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along with (2.26) and (2.29). We leave the details for the reader, in the interest of brevity.

Our next theorem concerns the boundary value problem

d4u
dx4

+ f (x,u (x),u’(x),u"(x),u’"(x)) e (x), 0 < x < 1,

with u satisfying the boundary conditions (1.2),

where e (x) L (0,1) and f" [0,1]xR 4 --) R satisfies Caratheodory’s conditions.

(2.32)

THEOREM 3. Let f [0,1 ]xR 4 ---) R satisfy Caratheodory’s conditions. Assume that f satisfies conditions

(2.8),(2.9),(2.12) ofTheorem 1.
Suppose that there exist functions a (x),b (x),c (x),d (x),ct(x) and non-negative numbers a,m,n,p,q

with b(x) e C2[0,1], c(x),d(x)e C1[0,1], o:(x) eLl[0,1], b(0)=b(1), b’(0)=b’(1), c(0)=c(1),
d(0) d(1), and a(x) > -a, b(x) < m, b"(x) > -2n, c’(x) < 2p, d’(x) < 2q such that

f (x,u,v,w,y)w > a(x)w2 + b(x)uw + c(x)vw + d(x)wy + 0t(x)Iw (2.33)

for almost a.e.x [0,1] and all (u,v,w,y) R4. Supposefurther that

48:4(a+q) + 122(m+p)+ n (42+3)< 1926 (2.34)

Then the boundary value problem (2.32) has at least one solution for each given e (x) e L 1(0,1), with

a < Ie(t)dt <A.
0

Proof. Define fl-[0,1]xR 4 ---R by fl(x,u,v,w,y)=f(x,u,v,w,y)-(A+a) and el L(0,1) by

el(x) e(x)- (A+a) as in the proof of Theorem 1, so that (2.14), (2.15), (2.16) hold and f satisfies

(2.33) with x(x) replaced by Ctl(X)= 0(x)- IA +a I. Further, the boundary value problem (2.32) is

equivalent to

d4u
dx4

+f(x,u(x),u’(x),u"(x),u "(x))=el(x), O<x < 1,

with u satisfying the boundary conditions (1.2). (2.35)

d4u
Define E:D(L)cY by ,u =-Lu

dx4
where L is defined by (2.1), (2.2). Take : Y1 ---X1 as

g’ -K, where K is the linear mapping defined earlier, so that for u D (L), Eu Y 1, tEu Pu and for
h Yl,gh D(L),Eth h. Again, defineN:X Yby

(Nu)(x) fl(x,u(x),u’(x),u"(x),u"’(x)), x [0,11,

for u e X, as in the proof of Theorem 1. Proceeding, as in the proof of Theorem 1, it suffices to show that
the set of solutions of the family of equations

eu + (1-X)Qu + XQNu + PNu 2e’ +. (2.36)

is, a priori, bounded in X by a constant independent of e (0,1), where ’ l(Pe 1, Qe 1. We notice

that (2.36) is equivalent to the system of equations

Pu + KIPNu Xe~

(1-K)Qu + KQNu .-d X (0,1).

It follows from the second equation in (2.37), as in the proof of Theorem 1, that

(2.37)
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Next we get, as in the proof of Theorem 1,

d4u
dx4

+ (1-.)Qu + .fl(x,u(x),u’(x),u"(x),u"’(x)) .el(x),

with u satisfying the boundary conditions (1.2), (2.39)

for x (0,1), using (2.37). Now we multiply the equation in (2.39) by u"(x) and integrate the resulting
equation over [0,1] to obtain

0 -oclx4 u"(x)dx + .f(x,u(x),u’(x),u"(x),u"’(x))u"(x)dx-.e(x)u"(x)cLr.
o o

> (u’"(x))2dx + .[a(x)(u"(x))z + b(x)u(x)u"(x) + c(x)u’(x)u"(x)
o o

+ d(x)u"(x)u’"(x) + x (x) u"(x) ]dx kle (x)u"(x)dx
o

> (u’"(x))dx + Z.[a(x)(u"(x)) + b"(x)(u(x)) -b(x)(u’(x))
o o

--c’(x)(u’(x))2 d’(x)(u"(x)):]dx ( a (x) + e fx) u"(x) dx
o

0

-(11xl II1 + Ilel II1)llu"ll**

2_> Ilu"’ll]-
1926

[484(a+q) + 12rl:2(m+p) + n(42+3)]llu"’l12

n (max(R, -r))2 -/l (max(R, -r))-2 II u’"ll 2 (11 ( I1 + II e Ill)II u ""ll 2,

where we have used the Wirtinger’s inequalities (2.28) and the estimate (2.38). it follows from (2.34) that

there exists a constant C, independent of , (0,1), such that

Ilu’"ll 2 < C.

Finally, there exists a constant C 1, independent of . e (0,1), such that

Ilu IIx Ilu IIc3[0,11 <C1,

as in the proof of Theorem 1. We have thus verified that the set of solutions of (2.36) is, a priori, bounded

in X C3 [0,1] by a constant independent of , (0,1). E!

Remark 1. If f" [0,1]xR4 ----> R in Theorem (resp., Theorem 2 and Theorem 3) is independent of y (i.e.,

f(x,u,v,w,y)=_g(x,u,v,w) for some g" [0,1]xR 3 --->R, then we do not need the assumption (2.12) in

Theorem (resp., Theorem 2 and Theorem 3). We remark that assumption (2.12) is needed to obtain an a
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once an a priori bound for Ilu IIc2[0,11 has been obtained. So (2.12) can bepriori bound for -replaced by any other assumption that accomplishes this task.

Remark 2. We note that for any given continuous function g:R -- R and any u e W’’l (0,1) with

U"(0) U"(1), lg(u")u"’dx and 1g(u’3u-’u"dx, both vanish. Accordingly, we can add the tema

g(u’3u"" to the equations studied in Theorems 1, 2, and 3 and obtain existence of solutions of the

modified boundary value problems, namely,

d4u
-dx4 + g (u’3u"" +f (x,u (x),u’(x),u"(x),u"’(x)) e (x),

with u satisfying the periodic boundary conditions (1.2).

Remark 3. Suppose that a(x)=-a, b(x)=m, c(x)=c, d(x)=-d, where c and d are some constants in

Theorem 3, so that n p q 0. Then the conclusion of Theorem 3 remains valid if 4:2a + m < 16rt4.

Remark 4. We refer the reader to [15] for Wirtinger inequalities used in this paper.

Finally, we remark that the theorems of this paper clearly apply to a wider class of boundary value

problems than the theorems studied by the author in [6],[7]. But it is easy to find situations where the

results of [6] and [7] apply and the results of this paper do not apply. Accordingly, the results of this paper
complement the results of [6] and [7].
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