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The notion of "Semigroup compactification’ which is in a sense, a generalization of
the classical Bohr (almost periodic) compactification of the usual additive reals R,
has been studied by J.F. Berglund et. al. [2]. Their approach to the theory of
semigroup compactification is based on the Gelfand-Naimark theory of commutative C*—
algebras, where the spectra of admissible C*-algebras, are the semigroup
compactifications. H.D. Junghenn's extensive study of distal functions is from the
point of view of semigroup compactifications [5]. 1In this paper, extending Junghenn's
work, we generalize the notion of distal flows and distal functions on an arbitrary
semitopological semigroup S, and show that these function spaces are admissible C*—
subalgebras of C(S). We then characterize their spectra (semigroup compactifications)
in terms of the universal mapping properties these compactifications enjoy. 1In our
work, as it is in Junghenn's, the Ellis semigroup plays an important role. Also,
relating the existence of left invariant means on these algebras to the existence of

fixed points of certain affine flows, we prove the related fixed point theorem.

l. PRELIMINARIES.

Let S be a semitopological semigroup (binary operation separately continuous)
with a Hausdorff topology, and C(S) denote the C*—algebta of all bounded complex
valued continuous functions on S (all topologies are assumed to be Hausdorff).
For s € S, define Lg and Ry on C(S) byLSf(t) = f(st) and Rsf(t) =
f(ts) (f € C(S) and t € S). A subspace F of C(S) is 1left (right) translation
invariant if LSF cF (RSF c F). 1t is translation invariant if it is both left and
right translation invariant. A C*-subalgebra F of C(S) is called admissible if it is
translation invariant, contains the constant functions, and is left-m-introverted,
i.e., Txf(.) = x(L(.)f) is a member of F whenever f ¢ F and x belongs to the spectrunm
of F (the space of all nonzero continuous homorphisms on F). In this
case, TX:F + F is called the left-m-introversion operator determined by x. A right
topological compactification of S is a pair (X,a), where X is a compact right
topological semigroup (i.e., X is a compact semigroup with the

mapping x>xy:X»X continuous for all y € X), and a:S*X is a continuous homorphism with
dense image such that for each s € S, the mapping x>a(s)x:XrX is continuous. If, in

* *
addition, a C(X) = F where F is an admissible subalgebra of C(S) and a :C(X)*C(S) is
the dual mapping frfoa, then (X,a) is called an F-compactification of S. A right
topologfcal compactification (X,a) of S 1is sald to be maximal with respect to a
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property P if (X,a) has the property P, and whenever (Y,B) is a right topological
compactification of S with the property P, then there exists a continuous
homumorphism v:X»Y such that voB=a. The factorization of the mapping 8 by a is
ceferred to as a uaiversal mapplng property of (X,a). F-compactifications are
maximal with respect to the property that a*C\X) € F (2, IIL Theorem 2.4]. This
result will be used frequently without specific reference to it. For a fixed
admissible subalgebra F of C(S), all F-compactifications of S are algebraically and
topologically isomorphic, and hence, we speak of the F-compactificatfon of S. If F is
a norm closed, conjugate closed subspace of C(S) containing constants, then a ueF*
(dual of F) is called a mean on F if u(l) =1 = ’lul‘. If F is further closed under
multiplication (pointwise), a mean p on F is called multiplicative if u(fg) =
w(fdu(g), £, g € F. We denote the set of all means [multiplicative means] on F by
M(F) [MM(F)]. With w*—topology, MM(F) is compact and it is the w"-closure of e(S),
where e is the evaluation map {e(s)(f) = f(s)}. We note that (MM(F), e) is an F-
compactification of S, and we call this the canonical F-compactification of S. We
will need the admissible subalgebra LMC(S) = {f € C(S):s+u(Lsf) is continuous for
all'y € MMC(S)} 1n the sequel. We note that the LMC(S)-compactification is maximal
with respect to the property that it is a right topological compactification of S [2,
111 Theorem 4.5].

A flow 1is a triple (S,X,m), where S is a semitopological semigroup, X is a
compact topological space, and n:S'XX is a continuous homomorphism such that u(s):X»X
is continuous for each s € S. We often write (S8,X) for (S, X, m) and sx
for m(s)x. Xx is a compact right topological semigroup (with respect to the product
topology and function composition) of all self maps of X. We denote the Ellis
semigroup, the clsoure of w(S) in Xx, by E(S, X). E(S, X) is then a compact right
topological semigroup. 1If X is a convex subset of a real or a complex vector space,
and n(s):X»X is affine for each s in S, then (S, X) is called an affine flow. A point
x in X is called a fixed point of the flow (S, X) if sx=X for each s in S. If Y is a
closed Invariant subspace of X, then (S, Y) is a flow under the restricted action. A
flow (S, X, n) is called distal if, whenever x, y € X such that lim s;x = lim sy for
some net (s;) in S, then x = y. let f ¢ LMC(S) and Z be the closure of Rgf in the
topology of pointwise convergence on C(S). Define n:S»ZZ by ©(s) = Rotye Then Z is
pointwise compact [6], and (S, Z, m) is easily seen to be a flow. f is called a
distal function if the flow (S, Z, w) is distal. H. D. Junghenn has shown that D(S),
the set of all distal functions, is an admissible subalgebra of C(S) and that a
function £ € LMC(S) is distal 1iff uev(f) = uv(f) for u, v in X and e € E(X), the
idempotents of X, where (X,a) is the LMC(S)-compactification of S. Also, he has
proved that the D(S)-compactification (Y,B) is maximal with respect to the property
that xey=xy for all x, y in Y, e € E(Y) [5, Theorem 3.4].

2. GENERALIZED DISTAL FUNCTIONS.

Let (S, X, w) be a flow and E(S, X), the Ellis_semigroup. Define
E(S, X)n = {glgz.........gn'gieE(S, X)}. Then E(S, X)n and N E(S, X)n are both
=1
compact right topological semigroups. We note that E(S, X)n 12 nonempty as compact

right topological semigroups have idempotent elements [4].
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DEFINITION 1. A flow (8, X, w) is n-distal (=~-distal) if for x, y € X, whenever
&(x) = E(y) for some £ e E(S, X), then z(x) = z(y) for every £ € E(S, )"
(¢ e NE(S, M.

DEFINITION 2. A function f ¢ LMC(S) is said to be n-distal (=-distal), if the
flow (S, Z, m), where Z is the closure of Rsf in the topology of pointwise convergence

on C(S), and n(s) = R is n-distal (e-distal). We denote the set of all n-distal

»
(=-distal) functionss!'; 0"(s) (D"(s)]. Clearly, D(s)< D'(5)< DA(S)E ....D"(S).
PROPOSITION 3, A flow (S, X, m) is n-distal 1if and only if, whenever
x, y € X such that lim 8% = lim 8y for some net (si) in S, then sx = sy for
every s € s"= {sisz......sn|si € S}.
PROOF. Necessity. Let x, y € X and (si) S such that lim 8% = lim S.¥.
Taking subnet 1if necessary, we have [1im ﬂ(si)](x) = [lim n(si](y). Then, by

hypothesis, (x) = ¢(y) for every z € E(S, PO Since w(s") € E(S, X)n, it follows
that sx = sy for every s ¢ s™. Sufficiency. Let x, y ¢ X and

€= lim n (sk) € E(S, X) such that &(x) = E(y). Then by hypothesis, sx = sy for

s es™ Let ¢e E(S, X) n Then, 7 = 10 Ly0ectvcevsesseo y where

g, = lim 7 (si ). By induction one can easily show that £, 0Z,0cececeses0f (X)
j 14 j 1772 n

= l{m 1im .......1im (silsiz.........sinx) for each x € X.
1 2 n
Thus, z(x) = ;10;20...........o;n(x) = I{T 1*;.......1{: (si1 512........sinx)

= lmeeeceoldm (sijeeenesiy) = 5(y)e  If g e E(S, X)", then ¢ = lim &s
g € é(s, x)", "and z(x) = lim ci(x) = lim ci(y) = z(y). This completes the proof.

We note that if S = 2, then D!(S) = D2(S) = .u... = DB(S) = D(S), and that if S has
an identity, then D(S) = D®(S) = D'(S).
EXAMPLES. i) Trivially all distal functions are n- and = distal functions.
(i1) Let S be the semigroup of all strictly upper triangular matrices (elements on
the diagonal and below are zero) of order n+2 with entries from reals. With discrete
topology, it is a topological semigroup and Dn(S) = LMC(S) = C(S). Defining g:S*R by
g(s) = (cl,n+2v0) A2, s = (Ci’ j) € S, one verifies that g e p"(S) and g € Dn_l(S).
(1ii) Let (N, +) be the semigroup of positive integers with discrete topology-
Define fn(t) = 1/t if t < n+l and = 0 if t > n+l. Again, it is easily verified that
f e D"(N) and fn € Dn-l(N). Later we give an example f € D (S) but e D"(s) for any

n.
Using the structure theory of compact right topological semigroups, one may

readily prove the following result of R. Ellis: (S, X) is distal if and only if E(S,
X) is a group with respect to function composition and with identity, the identity
function [4, Proposition 5.3]. We have a more general result corresponding to
generalized distal flows.

PROPOSITION 4. A  flow (S, X) 1is n-distal (o-distal) if and only
1f E(S, )™ (n E(S, X)) 1is left simple.

PROOF. We first prove the n-case. Necessity. Let Z = E(S, X)n. It suffices to

prove that pe = p for all p e Z and e € E(Z). Let x ¢ X and e € E(Z). Then e is
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also an idempotent of E(S, X), and e(x) = e(e(x)). Therefore by definition of n-
distal, p(x) = p(e(x)) for all p € Z, and hence, p = pe. Sufficiency. Let
x, y € X such that p(x) = p(y) for some p € E(S, X). Then pn(x) = pn(y) where
pn e E(S, X)n. As Z is left simple, Z = zpn. For any q € Z, q = rpn where
r € Z, and q(x) = (rpn)(x) = r(pn(x)) = r(pn(y)) = rpn(y) = q(y). Hence, the flow
is n-distal. The proof of the o-case is similar. We omit the necessity part and
supply the sufficiency part. Sufficiency. Let x, y ¢ X and p € E(S, X) such that
p(x) = p(y). Then, pn(x) = pn(y) for every n. As pn ¢ E(S, X), a compact space,
there exists a subsequence of (En), call it (qn), such that 9,79, in E(S, X). It is
readily verified that qp € nE(s, X)n and qo(x) = qo(y). Since Z = N E(S, X)n is left
simple, Z = ZqO‘ Let ¢ € Z. Then ¢ = ;l
e(x) = g, (q,(x)) = g, (a4(y)) = g,q
LEMMA 5. Let S be a semitopological semigroup, (X, a) the canonical LMC(S)-
compactification of S, and £ € LMC(S).

qo for some cl in Z. Now,

(y) = ¢t(y), and this completes the proof.

i) The following statements are equivalent.
a) £ e D'(s). .
b) Tuevf = Tuvf for all u € XzL_z € X, and e ¢ E(X)
c) uev(f = uv(f) for all u ¢ Xn+l, v € X and e € E(X).
i1) The following statements are equivalent.
a) £ eD(S) o
b) T, f =T, f foralluenXx’, veX, and e e E(X).
c) uef(f) = uv(f) for all u e X. ( N Xn), v € X, and e € E(X).

PROOF. For x € X, let Tx be the left-m-introversion operator determined by x.

Then, Z = the closure of Rsf in the topology of pointwise convergence on C(S)
= {Txf: x € X} [2, Femma 4.19]. Defining k: X+E(S, Z) by k(x)(Tyf) = Txyf, one
verifies that k is a continuous homomorphism of X onto E(S, Z) satisfying koa = w.
i) a) ====> b) Let u ¢ Xn, veX, and e € E(X). Then, k(u) ¢ E(S, Z)n, and k(e) is
an idempotent of E(S, z)". As E(S, Z)" is left simple (hypothesis), k(u)k(e) = k(u),
i.e., k(ue) = k(u). 1In particular, k(ue)(va) = k(u)(va) where va €Z, i.e., Ty f
= Tuvf' Since X is right topological with Wt topology, it follows that Tuevf = T,f
for all u € Xn, v € X, and e € E(X).

n+l

b) ====>c¢) LetueX , velX, and e € E(X). Then, u = uju,y, where u € X,

n
u, € X', and uev(f) = uluzev(f) = ul(Tu;vf) = ul(Tu;E) = uluzv(f) = uv(f). Thus,

uev(f) = uv(f). It is easily verified that uev(f) = uv(f) for u e Xn+1.

¢) ===> a) Let p € E(S, z)" and let d be an idempotent of E(S, z)". There
exists u € Xn, e € E(X) such that k(u) = p, and k(e) = d. Such a choice of e is
possible as k_l(d) is a compact subsemigroup of X. Let v ¢ X. For any w € X,
w(Tuevf) = wuev(f) = wuv(f) (hypothesis) = w(Tuvf). Therefore, Tuevf = Tuvf' Now,
k(ue) (va) = Tuevf = Tuvf = k(u) (va), , which implies that k(ue) = k(u). Thus,
pd = k(ue) =k(u) =p pd = k(ue) = k(u) = p. As E(S, Z)n is right topological, it
follows that pd = p for all

p € E(S, Z)n proving that E(S, )" is left simple. Consequently, the flow

(S, Z, n) is n-distal, and thus, f ¢ Dn(S). ii) The proofs of a) ==> b) and b) ==
c¢) in i) are easily modified to prove the corresponding results in ii). Let us prove
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the case ¢) ==> a). It suffices to show that N E(S, Z)n is left simple. Let

p € NE(S, Z)rl and let d be an idempotent of n e(s, Z)n. __ There exists
an e € E(X) such that k(e) = d. We prove the existence of an u in nx™ such that k(u)
= p. Let n be fixed and p € E(S, z)".  Then, p = lim p; for some (py) < E(S, )",
For each py, therej exists x, € X" such that k(xi) = Py Now (xi) (EXn) has a

) converging to an element, call it x,, in X", Py = k(xj)_vi?_\ich

converges to k(x_ ) and hence, p = k(x_). We now have a sequence (x )S X, (x € Xn),
n n n n

convergent subnet (x

having a convergent subsequence (x'n) such that x'n » uin X. One readily verifies
that u en X" and that k(u) = p. We omit the rest of the proof which is similar to the
proof of ¢) ===> a) in i).

THEOREM 6. a) D™(S) and D(S) are admissible subalgebras of C(S). b) The
Dn(S) - (DQ(S)—) compactification (Y,B) of S is maximal with respect to the property
that .

n+l n .

(1) uev = uv for ueY (ue¥Y. NY), veY, and e € E(Y)

PROOF. a) Let (X,a) denote the canonical LMC-compactificaion of S. That Dn(S) is
a linear subspace of C(S) is immediate from Lemma 5 (i). It is easily verified that
D"(S) is norm closed. Let f € Dn(S), u e Xn+l, veX, ecEX), and s € S. Then,
uev(Lsf) = a(s)uev(f) = a(s)uv(f) = uv(Lsf). Hence, DM(S) 1is 1left translation
invariant. In a similar manner, one verifies that D?(S) is right translation
invariant. The fact that X is the set of all multiplicative means proves that D™(S)
i{s an algebra. As uev(l) = uv(l), D"(S) contains all the constant functions. Let
we MM(D“(S)) and f € Dn(S). Let 9:%» MM(Dn(S)) be the restriction map. There
exists a w in X such that 8(w) =w'. wa = Tw'f’ and uev(Tw,f) = uev('l‘wf) = uevw(f) =
uvw(f) = uv(wa) = uv(Tw,f). Thus, Tw'f ¢ D"(S) which proves that D"(S) is left m
introverted. Thus, D™(S) is an admissible algebra of C(S). The proof that DQ(S) is
an admissible algebra is similar. b) We give the proof for the w=—case, and omit the
proof for the n-case. Let (X,a) denote the canonical LMC-compactification of S.
Let 8:X»Y denote the restriction mapping. The 6 is a continuous homomorphism of X
onto Y such that 6oa = B. First, we prove that Y has the property (1). Let
ueY.n Yn, veY, and e € E(Y), u = uju, where u € Y and u, € nYn. There exist
Xy, ¥y € X, d e E(X), and x, €N X" such that e(xi) =uy (i =1, 2), 6Cy) = v,
and 6(d) = e.  Therefore, for any f € Dw(S), uev(f) = 6(xdy)(f) = xdy(f) = xy(f)
[Lemma 5 ii)] = 6(xy) (f) = uv(f). Hence, uev = uv, and thus, Y has the property
(1) To prove that (Y, B) is maximal with respect to this property, it remains to

show that B; C(Yo)g Dw(s) for any right topological compactification (YO, BO) of S
having* property (1), where BS:C(YO) + C(S) is the adjoint of BO. It is shown
that Bo C(YO) S LMC(S) [5, page 385]. Therefore, there exists a continuous
homomorphism &§:X » Yo st:ch . that 80 = Soa. Let g € C(YO) and B;g = f.

Now, a(s) (f) = a(s) (Byg) = Byg(s) = g(By(s)) = g(8(als))). By taking
limits, x(f) = g(8(x)) for x € X. Let u € X. nx“, v ¢ X, and e € E(X).

Clearly, 6&Cu) € YO. ny? , 6(v) e YO’ and 8(e) is an idempotent of YO. Then uev(f)
= g(8(uev)) = g(8(u)é(e)d(v)) = g(8(u)d(v)) (since Y, has property (1))

= g(6(uv)) = uv(f). Thus, f ¢ DO(S) and this completes the proof.
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3. INVERSE LIMLTS AND Dn\S)-COMPACTIF§§éI£9§S.
In this section, we prove that U Dn(S) is an admissible subalgebra of C(S), and
its compactification (X,a) is the inverse limit space of the spectrun {Xn,nnm} where
\Xn,an) is the D™(S)-compactification of S and nnm:Xn-»xm (n>m) is the restriction
map. For definition and terminologies in Inverse limits, we shall follow Dugund ji

[31. Let T be a preordered set and {X,} be a family of topological spaces.

£ gel

For £ > ¢, assume there is given "EC:X + X_a continuous map such that whenever

£ C

E2¢2n, Ten = "Cﬂ [ "EC' Then the family [XE EC} is called an 1inverse

spectrum over I. The subspace {x ¢ HXE: T < E == Pc(x) = HEC

pg: n XE > XE is the projection méa, is called the inverse limit spectrum of the

spectgum and is denoted by X,
THEOREM 7. Let X be a compact topological space, and {XE}E e 1, indexed by a

) Pg(x)}, where

directed set I, be a family of topological spaces. Assume there are given HE: X+ Xg

for every £ and for £ > ¢, HEC: X£# XC surjective, continuous, and consistent maps
(i.e., for £ > ¢, wgco "g = "C) such that for any two distinct points Xy Xy € X,

there exists £ € I such that ng(xl) # ng(xz). Then X 1s homeomorphic to the inverse

gt

PROOF. The hypotheses imply that for £ > ¢ > n, nan= ncno HEC.

l{mit space of the spectrum {Xg: L

Therefore {ngngg} is an inverse spectrum over I. Set
= : < == =
X,={xe¢ lg Xgr 0 €8 ==>p (x)} = mp 0p(x)}

{x € gxg 7 < £ ==> x = "Ec(xn) where pn(x) = xn}.

Define 6:X » X as 8(x) = ("i(x))iel' We complete the proof by showing that 8 is a
homeomorphism. If ¢ < g, then pc(e(x)) = n;(x) = “ECO"E(X) (by consistency of
maps) = ngcopg(e(x)). Hence, 6(x) € X_. If x;, x, are two distinct points of X,
then by hypothesis, there exists £ € I such that ﬂg(xl) # "§(x2)° This implies that

S(X ) # e(x ) and hence, 6 is injective. Let y € X . For g < E, we prove that

(P ) Cn (p (y)) Let z € n Lo (y)) Then, “g(z) = pg(y) and
w (z) = "Eco L (z) (consistency of maps) = m,_ o pg(y) = pc(y) (since y € x ).

24
Therefore, z ¢ n (p (y)). Thus we see that, {if t, Tl tg, eeeeeeseat), are
arbitrary members of I such that t > tt (l < i < n), then
) rlytye nlly) # o
1

As L is continuous for each t and {yt} is closed, {n;l(yt):t € I} is a class of
closed sets in X, a compact space, with every finite intersection being nonempty (by

-1 -1
. N n =
2) Therefore, N Q 1™ (yt) ¢ For any x e 0 _m, (yt), 6(x) =y, and
hence 6 i{s surjective. Clearly 6 is continuous. Since X 1is compact, 6 is a
homeomorphism.
THEOREM 8. Let {F_ } indexed by a directed set I, be a family of admissible

£ Eel
subalgebras of C(S) such that Fﬁi Fg(“ < E) and (xg, “g) is the Fg

S. Then F = y F; is admissible and the F-compactification (X,a) is the inverse limit

—compactification of

space of the éﬁectrum {Xg ) where 1r£n:)(‘5 > Xn (n < &) is the restriction map
"gn(") = uan)o
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PROOF. Since I is directed, it is easily seen tha* F is admissible. Define
nv:X > XV as the restriction map. Then, in view of theorem 7, it suffices to prove

that for any two distinct points X5 Xy € X there exists n € I such that

nn(x ) £ \xz). The fact that X\ s Xy€ X and X, # %, implies that there exists

an f € F such that n (x,) # 1 (x,). The fact that x,, x, € X and x, # X, implies
pl n "2 1> 72 1 2

that there exists an f € F such that xl(f) [ xz(f). By coatinuity of x| and x,,

there exist n € I and g € Fn such that nn(xl)(g) = xl(g) + xz(g) = ﬂn(xz)(g). Hence,

nn(xl) # nn(xz) and that completes the proof. The following theorem is an immediate
corollary to theorem 8.

THEOREM 9. y Dn(S) is an admissible subalgebra of C(S) and its compactification

(X,a) is the 1inverse 1limit space of the spectrum {X i } where (X . an) is
the D"(S)- compactification of S and L X > X (n > m) is the resttiction map. It is
clear that D" (S)E,D (S). Now, we give an example of a function f € D (S) but

D &M for any n. Let £, be defined as in Example iii. Defining f(t) as f(t) =
1/t, t € N, we see that fn » f (norm). Thus, f € U Dn(N)E.D“(N). Clearly,

filD ). We remark that at this point we doc not know whether the containment in

U D"(8) € D(S) is proper.

4. FIXED POINT THEOREM.

Let F be a norm closed, conjugate closed, left (right) translation invariant
subspace of C(S) containing constants. Then a mean yon F is called left (right)
invariant if for each f ¢ F, s € S, U(Lsf) = u(f) [u(Rsf) = p(f)]. A left (right)
translation invariant subspace F of C(S) is said to be left (right) amenable if there
is a left (right) invariant mean on F, and amenable if F is translation invariant and
both left and right amenable. L. N. Argabright [1] has proved that F is left amenable
if and only if every affine flow (S, X, ) such that {x € X:UXA(X) CF} # ¢ has a fixed
point, where A(X) denotes the Banach space of all continuous complex valued affine
functions on X, and Ux:C(x) > C(S) is defined as Uxh(s) = h(sx), s € S, h € C(X), and

x € X. We make use of this result to prove the following fixed point theorem. Let
us prepare a lemma for proving the theorem. Defining wn: S » M(F)M(F)

m(s)(x) = L &5 where L denotes the adjoint of L :F » F, one verifies that, relative
to the action (s, x) » L x, (S, M(F), m) is affine flow. If in addition, F is an
algebra, then MM(F) is a closed invariant subspace of M(F), and relative to the
restricted action, (S, MM(F), n) is a flow. These actions of S are called the natural
actions of S on M(F) (MM(F)). let (Z = MM(Dn(S), B) denote the canonical Dn(s)—
compactification of S. Then relative to the natural action, (S, Z, n) is a flow.

LEMMA 10. The flow (S, Z, w) is (n+l)- distal.

PROOF. Let z; 2z, € Z and (si) € S such that 1lim s42] = lim 842y I.e.,

lim B(st)zl = 1lim B (: )z . Taking subnet if necessary, 232, = 242, where

zy = lim B (si) €Z. Hence yzoZ = ¥242, for every y € Z, from which 1t follows
that zz) = zz, for each z ¢ Zzo. Now, Zzo, being a left ideal in Z, a compact right
topological semigroup, has an idempotent element e. Thus ez = ez,. For

s e Sn+1, sz, = B(S)Zl - B(S)ezl (Theorem 6) = g(s) ez, = sz,. Therefore,

(8, Z, m) is (n+l)- distal (Prop. 3).
THEOREM 11. (Fixed Point Theorem) D"(S) is left amenable if and only if every
afffine flow (S, Y, m) containng a closed invariant subspace Z such that (S, Z, =) is
(n+1)-distal has a fixed point.
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PROOF. Let D"(S) be left amenable. Suppose tha* (S, Y, wn) is an affine flow
containing a closed invariant subspace Z such that (S, Z, r) is (n+l)-distal. WUe show
that {x € Y:UXA(Y)C Dn(S)} +# ¢ Let x € Z and h € A(Y). It is easily seen that
R =
SUxh USx S
subnet (ij) converging to some point X in Y. As n(s):Y + Y is continuous,

h. Let \Usixh) be a net in U ‘h. The net (six) in Z has a convergent
$8.X ¥ sxg for every s € S. Hence, h(sij) > h(sxo) for every s € S. It follows
that U

at Ysj . s
the pointwise topology, and thus, Uxh € LMC(S). Let (X,a) denote the canonical LMC-

xh > Ux h (pointwise). This proves that U xh = RSUxh is relatively compact in
compactification of S. As (E(S, Z),v) is a right topological compactification of §,
by the universal mapping property of (X,a), there exists ¢:X » E(S, Z), a continuous
homomorphism, such that $ o a = w. Then u(s)(Uxh) = h(sx) = h(n(s)(x)) =

h{(¢ o a)(s)(x)}. Taking limits (a has dense range in X, and h, ¢ are continuous),
n+l

we get u(Uxh) = h($(u)(x)) for each u € X. Let u e X ', v e X, and e € E(X).
Then ¢(u) € E(S, Z)nH, ¢(v) € E(S, Z), and ¢(e) is an idempotent in E(S, 2).
As E(S, Z)n+l is left simple ¢(u)¢(e) = ¢(u). Hence, uev(Uxh) = h(¢(uev)(x)) =

h(p(u)$(e)p(v) (%)) = h(p(u)p(v)(x)) = h(p(uv)(x)) = uv(Uxh).___- As X is right

topological, it follows that uev(Uxh) = uv(Uxh) for any u € Xnﬂ. Thus,

Uxh e D"(S). This proves the necessary part. For Sufficiency, let Y = M(D"(S)) and
define n(s):Y » Y as n(s)(x) = L:x, s eSS, x¢€YVY. Then (S, Y, w) {s an affine
flow. Let (Z, B) denote the canonical D"(S)- compactification of §. Then the
flow (S, 2, n) is (n+l1)-distal (Lemma 10). So by hypothesis, (S, Y, ) has a fixed
point y, s:ch that Yo = ¥, (= L:yo) for every s € S. Hence

yo(f) = Lsyo(f) = yO(Lsf) for every s € S and for every f ¢ D“(s). Therefore, yo is

a left invariant wmean on Dn(S).
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