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ABSTRACT. The problem of a semi-infinite medium subjected to thermal shock on its
plane boundary is solved using the generalized theory of thermoelasticity. The
expressions for temperature, strain and stress are presented. The results are

exhibited graphically and compared with previous results.
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1. INTRODUCTION.

Thermoelastic problems are solved using the governing dynamical equations for the

displacement and temperature. These equations are two partial differential equations.

Equation of motion:

pu, = (A + ) uj,ij + uui,jj - (3 + 2u)aT,i. , (1.1)
Equation of energy:

k '1‘,ii =p Ce'i‘ + (32 + 2y) a 'ro ékk' (1.2)

The first equation is of wave type and the other is of diffusion type. For an
isotropic, homogeneous elastic body subjected to a shock, the latter equation shows
that the disturbance will be felt instantaneously at distances far from its source.
As the cquations are coupled this effect will be felt in both temperature and
displacement. Such a behavior is physically inadmissible and contradicts the existing
theory of heat conduction.

Many researchers, for example Morse and Feshbach [1], Boley (2], Baumister and

Hamill [3] have discussed this paradox and suggested some modifications in the

governing equations. Lord and Shulman [4] proposed the Generalized theory of

thermoelasticity, where the time lag needed for the onset of thermal wave-relaxation



588 D. RAMAMURTHY AND A.V.M. SHARMA

time is considered and is well-known as the modified coupled heat conduction
equation. Based on this modified theory, considerable work is being done by many

authors (Fox [5], Ignaczak [6], Sherief and Anwar [7), and Choudhuri and Sain [81).

Here the problem of an isotropic, homogeneous half-space subjected Lo thermal
shock on its plane boundary is solved using Lhe Laplace transform technique. The
equations concerning the generalized Lheory of thermoelasticity are used to solve the
said problem. The boundary condition for temperature is in the form of exponential
heating, a more realistic situation. After effecting the Laplace inversion, the
expressions for temperature, strain and stress are obtained. As a special case, the
results due to Danilovskaya [9] Eor step-type boundary conditions and that of
Sternburg et al [10] for vamp type boundary condition can be obtained. Further by
setting relaxation constant to zero, the results due to Daimaruya et al [11] are

obtained.

2. FORMULATION OF THE PROBLEM.

Consider an isotropic homogeneous half space, subjected to a thermal disturbance
on its boundary. The governing equations of the generalized theory of thermoelasticity

for the one dimensional case, are

2 2 2 3
3T T 3T 3u 37u
k - =pC (—+ 71 =)+ (3A+ 2p) of (= + 1 s (2.1)
ax2 e '3t o at2 o " 9xat o 3xat2
Jdu
Oex = (A + 2p) P (3A + 2y) a (T-To) (2.2)
2 2
(A + 2p) du _ (32 + 24) a T _ du (2.3)
2 Ix 2
3x ot

where k, p, Ce, a, T are thermal conductivity, density, specific heat, coefficient of
linear thermal expansion and the relaxation time, respectively. ) and p are the well
known Lame's elastic constants. Here T, O’ and u are temperature, stress and

displacement, respectively.
The initial and boundary conditions are

T(x,0) = To, x>0

=0 = (3u_ 3T =
u(x,0) = 0 = (x99 (Gpo = O (2.4)
T(O,t) = To [1-exp(—t/t°)]
(32 + 2u)aTo
u'(0,t) = oI [1 - exp (-t/to)]. (2.5)

In the above, T and t, are constaats. The step type boundary condition is

o’
obtained when t, = 0, i.e. T(O,t) = H(t), and the ramp type boundary condition is
obtained by expanding the exponential type and neglecting the higher order terms.

Here H(t) is Heaviside unit step function.

The regularity boundary conditions are
T(x,t), ulx,t), o (x,t) » 0 as x » = (2.6)
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Introducing the following non-dimensional variables

C p C

_ Atz P e A+ 2u e

z = ( Py ) K X, ¥y = 0 K t,
T-T,
6=——2 I=0 OGr+2)al (2.7)
o]
c

s Araw3z 1 Pre

U=1le (&) X+ 2wa T, K Ju

for distance, time, temperature, stress, and displacement respectively in equations
(2.1) - (2.3), we get

o - o - BO=2a (U + 8U'),
- o = U, (2.8abc)
=0 -9

where 'dot' and 'dash' denote differentiation with respect to y and z respectively and
2 2
2
AT S G
o (W+2woecC, °
Here B and e are the relaxation constant and thermoelastic coupling constant,
respectively.

In (2.8a), the strain acceleration term (U') can be ignored as the product e.B is

much less than e or B in the intermediate and room temperature.

Now our initial and boundary conditions (2.4) - (2.6) reduce to

90

- = (U =0 = (2°
e(zyo) = U(z,()) = (ay)ygo = 0 (ay)y=01
&0,y) = - exp (-y/r;) (2.9)

U'(0,y) = 1 - exp(-y/t' )
O(Z'Y)’ U(Z,y), Z(Z,Y) *» 0 as z» o«

where C
A+ g_) P %

[ = = .
T o (¢ p k to

3. SOLUTION OF THE PROBLEM.

In order to obtain the solutions for the temperature (0) and strains (U'), we
first eliminate U,O from the first two equations of (2.8), namely

v coee

@M - (1+8) 0" -(l+e)o@" +0+8 0 =0 (3.1)

U - (1 +B)U"-(l+e)U"+U+8 U =0. (3.2)

Applying the Laplace transform to (3.1), (3.2) and (2.9), one obtains
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@ - plp(1+8) + (1+a)] O + p>(p+8p’) © = 0
(3.3)
U"" - plp(1+8) + (l+e)] U" + pz(p+Bp2) U =0.

Here 0, U are Laplace transforms of 0 and U respectively and p 1is the transform

parameter, and
- o
© (0,p) T /p,
U'(0,p) = 1/pp,, (3.4)
o(z,0) = U(z,0) = 0.

In the above,

= '+ 1.

P P TO 1

From (3.3) and (3.4), we get
0= Al exp (-azz) + A2 exp (-azz)

(3.5)
U= Bl exp (-alz) + B2 exp (-uzz)

where
- 2
= 1 - Al
A g = %D e+t (o), —pp)l
a B =3%D[le -1 pp' +p - 2 /pl
1,2 °1,2 o PPy %,1
1 2 2
D =P, (o) ~ay)
' =
po 1 + Bp

2, = B ¢ (148) + [Cemp + (1427 - appyl P

We consider a special case in which the relaxation constant (B) is expressed in

terms of the coupling constant ;, i.e. B = ~l:— . For this value of B, we get
1+e

af = pz + p/B, a§ = sz (3.6)
and then the transformed temperature and strain become
Bz,) = N(p) (51 plexp(-a,2)-(p2x! (1-8)+43p, dexp(-a,2)] 3.7
U'(z,p) = N(p)[[e + p(1-B-1)) - Bor'pzl exp (-a,z)
(3.8)

+ (1 + répép) exp (—azz)]

where
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N(p) = = ommeobogoo

pp (p + b?) (1-8)

2_ 1
L TeRary I

Inverting (3.7) and (3.8), we get

0= ClI(O) +C, EXP('Y/T;) I(llt;) +C

and

U’ =

where

I(w)

B, ()
F(z .Y)

H(y-z)

and

3 exp(-bzy)l(bz)

+C, bl(l/té) +Cg ol(bz) + Csﬂz(llré) + c7¢2(b2)

K, I(B) + K,I(1/7)) + K1) + KB (/1))

+ kg B,06%) + RBA/T) + K 8,067 - (8/(1-8)) @/ 2E-1)

y
= [ 2 expl(w - 321 F(z,2) H(8-2)d2

o

- = '
(1 -8) D, c bt: D

—C3/Dl, C_ =D

2
b8 D2D3/ (1 - B)

2
2

2’ 4

6 2’

1

D,

2 - = -
-8(b Ts + e) D1D C CZ/DI

c7 = -D3.DZ/(1-B).

2 _ o/t
N b (Té 8) DIDZ exp( y/to)

D.D,D,b> exp (-bzy)/ (1-8),

17273

2

-bz(t; - 8)
X, = --—-i§-——— D, exp(-z/28)

2 2

b%8 D,D, exp (-2/28), Ky = -D/(b’t) (1 - &)
2

. D, = 1/Q14 8

2, - _ay2 '
1/(1-b ro). D, (1-8)" + T

[1 - expl(z-y)wl] H(y-2)/w, B,(w) = [1 - expl(/Bz - y)wl] B(y-/Bz)/w

Il(z'/ze)/nlz'
o, 0<y<z

1, y >z

2t = (52 22

Here Il is the modified Bessel function of first kind.

(3.9)

(3.10)
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The expression Ffor stress can be obtained f-om (2.8¢), (3.9) and (3.10).
Taking r; = 0, recovers the results due to Danilovskay. [9] and setting 8 = 0,

recovers the results of Daimaruya [11].

4, RESULTS AND DISCUSSION.

The results for temperature, strain and stLress distributions are evaluated
numerically and exhibited graphically in figures 1 to 3, for a particular value of the
relaxation constant (B) given by B = 1/(1+e). The transport of thermal energy in the
medium, i.e. either a diffusion process or a wave Like process depends on the
magnitude of the relaxation constant. It was observed that at low temperatures the
magnitude of the relaxation constant becomes significant and the energy equation
predicts a wave-type phenomenon. The magnitudes of the coupling and relaxatlion
constants were calculated over a range of intermediate and high temperatures by Lord
[12). The values of the coupling paramter e are smaller than unity for most of the

materials.

Her: for the computation, the relaxation constant (B) was taken as 0.98 and 0.7¢
(the corresponding values of e are 0.1 and 0.31 respectively) and the values 0.25,
0.5, I and 2 for the t;. The time-dependence of the non-dimensional temperature (0),
strain (U'), and stress (L) are depicted as a function of non-dimensional time y at

the non-dimensional distance z = 2 for T; = 0.5.

As the relaxation constant increases the corresponding components of temperature,
strain and stress decrease. The gap between these corresponding parameters increases,
due to the effect of relaxation time unlike that of coupled theory. It may be
mentioned that a similar phenomena was observed by Daimaruya [11] in case of coupled
theory. Moreover due to presence of Heaviside unit step function, the two
discontinuities can occur in temperature and stress at the wavefronts y = z and

y = j; z and the corresponding accoustic velocity (v;) and thermal velocity (vy) at
the wavefronts are 1 and 1//B respectively. Last but not least, the results obtained

here which including the effect of the relaxation time are more general.
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Fig, 3. Time dependence of stress at z = 2
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