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ABSTRACT. The problem of a semi-infinite medium subjected to thermal shock on its

plane boundary is solved using the generalized theory of thermoelastlclty. The

expressions for temperature, strain and stress are presented. The results are

exhibited graphically and compared with previous results.
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INTRODUCTION.

Thermoelastic problems are solved using the governing dynamical equations for the

displacement and temperature. These equations are two partial differential equations.

Equation of motion:

Pui-- ( + ) uj,ij + Bui,jj (3k + 2)aT,i. (I.I)

Equation of energy:

k T,ll p CeT + (3 + 2) a To k" (1.2)

The first equation is of wave typ and the other is of diffusion type. For an

isotropic, homogeneous elastic body subjected to a shock, the latter equation shows

that the disturbance will be felt instantaneously at distances far from its source.

As the equations are coupled this effect will be felt in both temperature and

displacement. Such a behavior is physically inadmissible and contradicts the existing

theory of heat conduction.

Many researchers, for example Morse and Feshbach [I], Boley [2], Baumlster and

Hamill [3] have discussed this paradox and suggested some modifications in the

governing equations Lord and Shulman [4] proposed the Generalized theory of

thermoelasticity, where the time lag needed for the onset of thermal wave-relaxation
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time is considered and is welt-known as the modified coupled heat conduction

equation. Based on this modified theory, considerable work is being done by many
authors (Fox [5], Ignaczak [6], Sherief and Anwar [7], and Choudhurl and Sain [8]).

Here the problem of an isotropic, homogeneous half-space subjected Lo thermal

shock on its plane boundary is solved using the Laplace transform technique. The

equations concerning the generalized theory of thermoelasticlty are used to solve the

said problem. The boundary condition for temperature s in the form of exponential

heating, a more realistic situation. After effect[ng the Laplace inversion, the

expressions for temperature, strain and stress are obtained. As a special case, the

results due to Danilovskaya [9] for step-type boundary condftlons and that of

Sternburg et al [I0] for ramp type boundary condition can be obta|ned. Further by

setting relaxation constant to zero, the results due to Dalmaruya et al [I l] are

obtalned.

2. FORMULATION OF THE PROBLEM.

Consider an Isotropic homogeneous half space, subjected to a thermal disturbance

on its boundary. The governing equatlons of the generalized theory of thermoelastlclty

for the one dimensional case, are

k
T T _2T 32u 3u

-Sx-- PCe ( + T

8t
2) + (31 + 2) To ( + o

8xSt

uaxx (I + 2U)---- (31 + 2) o (T-T)
o

T 32u
x2

t 2

-) (2.1)

(2.2)

(2.3)

where k, O, C , T are thermal conductivity, density, specific heat, coefficient ofe o
linear thermal expansion and the relaxation time, respectively. I and are the well

known Lame’s elastic constants. Here T, Oxx and u are temperature, stress and

displacement, respectively.

The inltal and boundary conditions are

T(x,O) T x > 0
o

u(x,0) 0 (u__) T
3t t--0’ (-)t=0 0 (2.4)

T(0 t) T [l-exp(-t/t )]
o o

(31 + 2)aT
ou’(0,t) (I + 2) [I -exp (-t/to)]" (2.5)

In the above, To, and to are constants. The step type boundary condition is

obtained when to 0, i.e. T(0,t) H(t), and the ramp type boundary condition is

obtained by expanding the exponential type and neglecting the higher order terms.

Here H(t) is Heavlside unit step function.

The regularity boundary conditions are

T(x,t), u(x,t), (x,t) 0 as x .
xx (2.6)
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Introducing the following non-dimensional var[able.q

( + 2)I/2 0 C p C
e %+ 2 e

z
p k x, Y

0 -k-- t,

T T
o

S o (3 + ) a re ------, xx o
O

+ 21a 3/2 p C
e_]U [p (-----) (3, + 2V)a T k

u
O

(2.7)

for distance, time, temperature, stress, and displacement respectlvely in equations

(2.1) (2.3), we get

e" e’ B (u’ + u’),

U" @’ , (2.8abc)

E=U’

where ’dot’ and ’dash’ denote differentiation with respect to y and z respectively and

I (3 + PCe
P 21J_) -"’-- TO’ "

(3 + 2U) 2 a2 T
O

(X + 21) p C
e

Here B and e are the relaxation constant and thermoelastlc coupling constant,

respectively.

In (2.8a), the strain acceleration term (") can be ignored as the product .B is

much less than or in the intermediate and room temperature.

Now our initial and boundary conditions (2.4) (2.6) reduce to

u .e)e(z,O) U(z,O) (-)y=O 0 --y y=O’

EKO,y) exp (-y/T’) (2.9)
O

where

U’(0,y) exp(-y/’
O

9(z,y), U(z,y), r.(z,y) 0 as z-

X._+2p
P Ce

r’ ---- t
O O

3. SOLUTION OF THE PROBLEM.

In order to obtain the solutions for the temperature (e) and strains (U’), we

first eliminate U, from the first two equations of (2.8), namely

e..... (1 +) "- (1 +g) e"+e+ e =o (3.1)

U..... (1 + ) U" (1 / ) U" / U / U 0 (3.2)

Applying the Laplace transform to (3.1), (3.2) and (2.9), one obtafns
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..... p[p(l+B) + (I+)] " + p2(p+Bp2) 0

..... p[p(I+B) + (1+)] " + p2(p+13p2) O.

(3.3)

Here O, U are Laplace Lransforms of 0 and U respectively and p Is the transform

parameter, and

e (0,p) ’/p
O O

’(0,p) I/pp (3.4)

(z,0) (z,0) 0.

In the above,

po =p ’ + I.
O

From (3.3) and (3.4), we get

where

0 A exp (-ct2z) + A
2 exp (-a2z)

U BI exp (-alz) + B
2 exp (-a2z)

2 /p]al, 2 BI, 2
D[e Z’o PP + p a2,!

(a21_ a22)--Po

p-- + Bp

2 4pp] i-al,2 2 [(l+13)p + (1+) :1: [((1+8)p + (1+-)) 2 1/2

We consider a special case in which the relaxation constant (B) is expressed in

terms of the coupling constant e, i.e. For this value of B, we get
l+e

2 2 2
a p + p/I3, a

2
IBp2 (3.6)

and then the transformed temperature and strain become

z,p) N(p) [(-z p)exp(-al z)-(p2"r’(o l-IB)+’Po)eXp(-a2z) (3.7)

2
U’(z,p) N(p)[[e + p(l-B-z) BoZ’p exp (-al z)

+ (I + p’op) exp (-a2z)] (3.8)

where
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and

N(p)

PPo(p + b2) (l-B)

2
b S(I S)

Inverting (3.7) and (3.8), we get

(R) CII(O) + C
2 exp(-y/) l(I/z) + C

3
exp(-b2y)l(b2)

+ C4 1 (l/z) + C 5 l (b2) + C62(1/’) + C72(b2)

and

U’ ZlI() + K2I(I/z) + K3I(b2) + K4I(I/z)

+ K
5 I (b2) + K6(I/z) + K72(b2)

where

Y
l(w) z exp[(w- )] F(z,) H(-z)d

o

C (I S) S C
2 b2 DID2

C3 =-S(b2 Z’o + ) DID2’ C4 "-C2/DI

C
5 -C3/DI, C

6
D2, C

7 =-D3.D2/(I-B)

K1 Cl’ K2 b2(Z’o S) DID2 exp(-y/’)
-b2(z’ B)

o
K
3 DID2D3b2 exp (-b2y)/ (l-B), K4 ,

o
D
2
exp(-z/2S)

K5 b2S D2D3 exp (-z/2B), K
6 --D2/(b2" (1 S) 2)

K7 b2S D2D3/ (1 B)2, D I/(144 S2)

D
2 1/(1-b2"), D

3
(l-B)2 + "o

l(W) [I exp[(z-y)w]] H(y-z)lw, 2(w) [! expI(/z y)wll H(y-/z)/w

F(z,y) Ix(Z’/2S)/DIZ’

H(y-z) O, 0 < y < z

(3.10)

1, y>z

and
2 I/2Z’ (y2-z)

Here I is the modified Bessel function of fi[t kiod.



592 R. RAMAMURTHY AND A.V.M. SHARMA

The expression Eor stress can be obtained f-ore (2.8c), (3.9) and (3.10).

Taking ’o 0, recovers the results due to Dan[tovskay.i [9] and seLLing 0,

recovers the results of Datmaruya Ill].

4. RESULTS ND DISCUSSION.

The results for temperature, strain and stress distributions ate evaluated

numerically and exhibited graphically in figures to 3, for a particular value of the

relaxation constant (8) given by -- I/(l+). The transport of thermal energy In the

medium, i.e. either a diffusion process or a wave Like process depends on the

magnitude of the relaxation constant. It was observed that at low temperatures the

magnitude of the relaxation constant becomes signif[cant and the energy equal ion

predicts a wave-type phenomenon. The magnitudes of the coupling and relaxatlon

constants were calculated over a range of Intermediale and high temperatures by Lord

[|2]. The values of the coupling paramter are smaller than unity for moat of the

materials.

ller for the computation, the relaxation constant (8) was taken as 0.98 and 0.76

(the corresponding values of e are 0.I and 0.31 respectively) and the values 0.25,

0.5 and 2 for the ’. The tlme-dependence of the non-dimensional temperature (0),
o

strain (U’), and stress (Y.)are depleted as a function of non-dlmenslonal time y at

the non-dlmenslonal distance z 2 for ’ 0.5.
o

As the relaxation constant increases the correspoading components of temperature,

strain and stress decrease. The gap between these corresponding parameters increases,

due to the effect of relaxation time unlike that of coupled theory. It may be

entloned that a similar phenomena was observed by Dalmaruya Ill] In case of coupled

theory. Moreover due to presence of Heavfslde unit step function, the two

discontinuities can occur in temperature and stress at the wavefronts y z and

y- z and the corresponding accouatlc velocity (v I) and thermal velocity (v2) at

the wavefronts are and I/ respectively. Last but not least, the results obtained

here which including the effect of the relaxation time are more general.
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Fig. I. Time dependence of temperature at z 2.

Fig. 2. Time dependence of strain at z 2.
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Fig. 3. Time dependence of stress at z 2.
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