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ABSTRACT. In this paper we generalize the primitive element theorem to the
generation of separable algebras over fields and rings. We prove that any
finitely generated separable algebra over an infinite field is generated by
two elements and if the algebra is commutative it can be generated by one
element. We then derive similar results for finitely generated separable
algebras over semilocal rings.
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1. INTRODUCTION. It is a well known result (Nagahara, [1]) that any
finitely generated separable simple algebra A over a field F is generated over
F by two conjugate elements of A. It is also known that if x is an element of
A vwhich does not belong to the center of A, thent‘hereexistsaunitxlinA
such that A is generated over F by x and %, (Nagahara, [1]).

We present a proof of same of these results in section 2. In section 3,
we examine the problem of generating separable finitely generated algebras,
not necessarily simple, over infinite fields and local or semilocal rings.
Namely, we show that a finitely generated separable algebra over an infinite
field F is generated by two elements over F. In the case the algebra is
commutative it can be generated by one element. We give a counter example to
show that the condition, that the ground field is inifinite, is necessary. In
section 4, we examine algebras over semilocal rings and we show that a
finitely generated central separable algebra over a semilocal ring can also be
generated by two elements over the ring and one element if the algebra is
commutative. The condition that the algebra is central can be eliminated and
the theorem still holds if the local fields of the ring, i.e. the ring modulo
its maximal ideals, are infinite.
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2. CQOONVENTIONS, RELEVANT RESULTS.
n
letA= 1 D iy be a simple ring finite over a simple subring B as left
i,j=1

B-module where the ey are matrix units and D = CA({eij}) is a division ring.
Cp(S) is the centralizer of the subset S of A in A. Let By = B[{eij}] =

n

I Dy €5 where D, = CBl({eij}) is a division ring. We prove here some
i,j=1
basic results from [1], using a somewhat different approach.

Lemma 2.1: If D is a finitely generated separable division algebra over
the field F, then there exist units u,d in D such that D =F [u, d u d"1].

Proof. Iet M be a separable maximal subfield of D over F, then M = F[u] with
some u (see [1] Corollary 7.9). Let C be the center of D. Then M = C[u] and D
is finitely generated, central division algebra over C, with maximal subfield
M. Therefore if [D:C)] = n2, (by (3], theorem VII 11.3), we know that there
exists a unit d in D such that the set {ui d uj/i,j =0,1, ..., n-1} is basis
for D over C. Consequently, D= @ wlauwic= = ui(dud"l)jc = Clu, dud 1)
i,3 i,3
= Clu][dud™l] = F[u,dud"l], which campletes the proof.

Lemm 2.2: Iet A, B be as in the conventions. If D =D,(x,y] with
some conjugate x,y in D, then A = B[u,v] for some conjugate u,v units of A.

n
Proof. Since A = : D ej4 if r=1 the lemma is trivially true. let n>1
i,j=1
n n n
= = w1 = - - -1 :
and w= ei,n-i+1' W, =2 ei-l,i and Vi= I €§,4-1= WyW . Since
i=1 i=2 i=2

x and y are conjugates, we have y = dxd™l for some d element of D. Also,
eij=vll 'luln'lvln"lul 1 for i,9=1, ..., n. In caseD = D, we have B[1-uj,
w(l—ul)w'l] = B[uy,v;] =B [{eij}]= A, and 1-u; is a unit. Hence, assume that D
# D;. Examine two cases: (i) if xy # 1 and (ii) if xy = 1. In the first case,
define u as uy+xe,;, vV as vy+ye; . Then v=dwu(dw) 1 and u'L—v1+x’1elnis an
element of B[u]. Therefore (x"l--y)eln =ulwy is an element of B[u,v]. Hence
(1-xy) e, = u(x’l-y)e]_n is an element of B[u,v] and (1-xy)e;, = u" I(1-xy)e
and (1-xy)epy = (1-xy)e, V"I are elements of B[u,v], for every i,j =1,..., n.
Hence for every i,j = 1,..., n, we have (l-xy)2 i is in B[u,Vv]. Since (l-xy)2
is a unit in B[u,v], we get {eij} is a subset of B[u,V].

n
Alsox=u", y= 1 ej; Ve, are in B[u,v] and therefore B[u,v] = B[X,Y, {ej5))

i=1
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=Dy [x,Y, {eij}] = D[{eij}] =A. Inthe second case, (ii) if xy=1 then D=D;
[x,y]=D;[x] and since D # D; we get X # +1 or x2#1. We can now apply the first
case for y=x to complete the proof.

2.1: Any separable simple algebra finitely generated over a
field is generated over the ground field by two conjugate invertible elements.

Proof. If A is separable simple finitely generated over a field F and A =
n

b Deijr then Lemma 2.1 implies D=F[x, d x d'l], where x is a generating
i,j=1
element over F of a maximal subfield of D. Therefore, by Lemma 2.2 we have A
= F[u,v] for some conjugate u,v units in A, which completes the proof of the
theorem.

Lemma 2.3: Let E a proper division subring of a division ring D and a in
D with ab#ba for some b in D-E. ILet C the center of D. Then:
(1) There exist at most two elements Cys i=1,2incn E such that (btcy)
a(bic;) le E.
(2) If aftE, then there exists at most one element c of the centralizer of a
in E such that (b+c)a(b+c) 1cE.

Proof. Suppose that there exist c;, c;, c; three different elements in
C E such that ai=(btcj)a(btc;) ! is contained in E, for i=1,2,3. Then batcja=
ajbtajc; for i=1,2,3 hence (c;—c,)a=(a;-a,)b+(a;c-a ,¢;) and (cy—cj)a=(a; -aj)
bH(a,cy-a3c;) S0 a=(c;=Cy) ~L(aj-ay)br(cy—c,) “(ajcymac,) and a=c (cp-cy) 7t
(al-a3)b+(c1-c3)_1(alcl-a3%). Subtracting those two, by elementary calcula-
tion we get a,=a; which contradicts the fact that if c,#cy then (b+cz)a(b+c2)"1
#(btey)a(bicy) 1, for if (bicy) a(biey) ™l =(bicy) a(biey) T'=a’, then (cy-cy) a=
a'(c, —c3), which gives a=a'. But (b+Q)a(b+<*1)'1=a leads to a contradiction
ba=ab. To prove the second assertion suppose there are two, elements c, and ¢,
in Cg({a}) with c; = c, and a; = (btcj)a(bic;) L an element of F, for i=1,2.
Then b = (az-al)'l[(alcl-c1 a)-(a, c;cya)]€E and this is a contradiction,
which proves the lemma.

Using the above lemma we can prove the following:
2.2: If D is separable division algebra finitely generated over
field F and a is an element of D such that a is not contained in the center of

D, then D = F[a, a,] for same a; in D.

Proof. Consider M the maximal separable subfield of D. If M = F(x], then
theorem 2.1 implies D=[x,y), for some y. By the fundamental theorem of Galois
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theory for simple rings (see [1], Theorem 7.7), since M = Cp(M), we have that

the number of intermediate fields between M and C is equal to the number of

intermediate rings between D and M. Therefore, the number of intermediate
rings between D and M is finite, say {A;,..., Aj}. Now y is not contained in

A; for any i, since F[x,y] = D. We examine two cases:

(i) If ay = ya then a(xty) # (x+y)a, since a is not in the center of D, so D =
F[x,x+y] and we can apply (ii) for x, x+y.

(ii) If ay # ya, from lemma 2.3 we have that for every i, there exist at most
two elements ¢, ¢, in F such that (y+c1)a(y+c1)'1 is an element of Ay,
and (y+c7)a(y+<:2)_1 is an element of A;. Let yy=y+cy where cy in F such
that yoayo'1 is not contained in A; for any i. Then D=M[y0ay0'1]=F[y0ayo

“1,u)=F(a,y,™! uy,)-

THEOREM 2.3: lLet A be a separable finitely generated simple algebra over a
field F and a an element of A not contained in the center of A. Then A = F[a,

a,] for some a; unit in A.
Proof. See [1], Theorem 12.1.
3. GENERATION OF AILGFBRAS OVER FIEIDS.

Lemma 3.1: If S is a commutative algebra over a field F, then S is separ-
able over F if and only if S is the direct sum of separable field extensions of
F.

Proof. The proof follows since commutative separable algebras over fields
are semisimple, hence S is the direct sum of field extensions of F which are
separable over F since S is.

We now prove a generalization of the primitive element theorem for finitely
generated commutative separable algebras.

THEOREM 3.1: If S is a finitely generated commutative separable algebra
over an infinite field F, then S is generated over F by only one element, i.e.
S = F[a], for some a in S.

Proof. By Lemma 3.1 we have S=F@F,+... &F,, with Fi a separable finite field

extension of F. By the primitive element theorem, F; = F[x{] for some x; in S,
which gives S=F[x;, ..., X,]. ILet n=2. Then S=F; @F,=F[x,])#F[x,]. Now, since
F;=F[x;] is a separable field extension of F, there are a finite number of
fields between F; and F. If A is a commtative separable subalgebra of S, then
A=F'1@F'2 with F'; subfield of F; and therefore there is only a finite number
of commutative separable subalgebras of S. If ¥x=x,+ax,, where a in F, then



GENERALIZATIONS OF THE PRIMITIVE ELEMENT THEOREM 467

F[x] is a comutative separable subalgebra of S and since F is infinite but
there can only be a finite number of F(x]'s, there exist two different elements
x'. x'"' of S, X' =x+a;X, and x''=x +a,X,, with a; in F, such that F[x'] =F
[x'']. Consequently, x' and x'' are contained in F(x'], which implies x'- x''=
(al-a2)x2 also belongs to F(x']. Since a) - a, is invertible, x, and x;=x'
-a;x, belong to F(x'], which gives that S = F[x,, X;] is contained in F(x'].
Hence, S = F[xy, X;] = F[x']. An easy induction on n gives the result.

We now prove that if the algebra is not cammutative we can still generate
the algebra fram just two elements.

THEOREM 3.2: Iet S be a finitely generated separable algebra over an
infinite field F. Then S = F[x,y], for some X,y in S.

Proof. S separable implies S is semisimple so S = 5,8...85, with S; simple
and separable over F. By Theorem 2.3 we have S; = F[%j, yj], X{, Yi contained
in S. Let Z; denote the extension F(x;] of F for i=1,..., n. Then Z; is
separable over F and if Z = Z1®...®Zn then Z is a comutative separable algebra
over F. Now Theorem 3.1 implies that Z = F[x] for some x in 2. Let y = y;
+...+yn. Then we have x is an element of F(x], for hence ¥y is an element of
F(x,y] for every k and x! yJ = (xtep) v3 = xi(eyd) = xten I = (e
=-'xkjykj, where e, is the identity in F[x]. So xkiykj is contained in F[Xx,y])
hence yy is contained in F(x,y] so F[x, Y] is contained in F[x,y] for every k.
n
Therefore S = @ F[x, Yk] is contained in F(x,y], from which S = F[x,y].
k=1
This proves the theorem.

The condition that the field has to be infinite in Theorems 3.1 and 3.2 is
necessary as is shown by the next example.

v

If F is the field with q elements, F = {al ..., aq} and S= @ Fi, where
i=1

F; = F for every i, F < F[x]/(x-aj). Let v>q. Then S is separable over F but

cannot be generated by less than two elements since F; @ Fz@...@i“qﬂ Y F+F([x)/

q q
n(x-ay) 4 F[x]/(x-a;{) @F[xX)/ 1 (x-a;) which cannot be of the form F(x]/

i=1 i=
q

poly(x) since x-a; is not prime to 1 (x-aj). In fact if v>rg, where n is the
i=1

the biggest integer with that property, then S cannot be generated by less than
r+l elements.
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4. GENERATION OF ALGEBRAS OVER RINGS.

In proving the following theorems we use the following form of Nakayama's
Lerma: Let M be a finitely generated module over a commutative ring R. If AM
= M for every maximal ideal A of R, then M = 0.

THEOREM 4.1: let S be a commtative, finitely generated separable R-
algebra, where R is a local ring with maximal ideal I, such that R/I is an
infinite field. Then S = R[a], for some a in S.

Proof. By Theorem 1.11([2], we have that S/IS is commutative, finitely gener-
ated, separable over the field R/I, so by Theorem 3.1 S/IS = R/I[a] with some a
= a+IS contained in S/IS. We prove that IS + R[a] = S. Clearly IS + R[a] is
contained in S. Also for every t contained in S we have t + IS = poly R/I(El) =
(£ t1)aM. L+ () BHrgtI=(r @M. . .4rjat ry) + IS, so t is contained in IS +
R[a). Therefore I. S/R[a] = (IS+R[a])/R[a] = S/R[a] which by Nakayama's lemma
implies S = R{a].

THEOREM 4.2: Let A be a finitely generated central separable R-algebra
where R is local ring. Then A = R[a,b] for some a,b in A.

Proof. let I be the maximal ideal of R. A is central separable implies (by
Theorem 3.2[2]) that A/IA is finitely generated, separable, simple over R/IS
R.1 = R/I a field, therefore by Theorem 1.1 we have A/IA = R/I[a,b] for some a
= atIA, b = b+IA. We show that IA + R[a,b] = A. Clearly IA + R[a,b] is a
subset of A. Also for t in A we have t+IA =1 ;ij al =5 ajj alpd+1a  which
ij ij

is contained in R(a,b]+IA. Therefore we have that I.A/R [a,b] = (IA+R[a,b])/R
[a,b] = A/R[a,b] and hence by Nakayama's lemma A = R[a,b].

We note that if we drop the condition that A is central over R, the
Theorem will still hold if R/I is an infinite field, since in the proof we can
use Theorem 3.2 instead of 2.1 to get the same conclusion.

We now prove two theorems for a semilocal base ring.

THEOREM 4.3: let S be a comutative, finitely generated separable
algebra over R, where R is a semilocal ring with maximal ideals Iy,...,
I, such that R/Ij is infinite for every j. Then S = R[a], for some a in S.

Proof. let radR be the radical of R. Since R/Ij infinite for every j, R/radR
n

=r/ N I4 has to be infinite. For every j, we can show as in Theorem 2.3
j=1
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that if S/IjS = R/I [a 1, aj =23 +I S, then I S+R[a]] =S. We have that s/
n n

(radR)S = §/ N I38 = R/I,(a,] #R...@R/I [a,] which is contained in & R/Ij
j=1 i=1

(aj,..-,a] = R/radR[ay,..., a,]. Therefore S/(radR)S = R/rad R[3;, ...,3p)
and hence (as in Theorem 2.3) (radR)S+R[ay..., a,] = S. Consequently, S =
(radR)S + R[ay, ..., aj]1 < IjS + R[ay, ..., a5] but also Ijs + R[ay, .-+, ap)
CS, hence we get that for every j we have Ijs + R[ay,..., a,]= S. Now suppose
that n = 2. Then S/(radR)S = R/I; N I,(3;, a,]. Consider R/I; N I, [a,],
where a,=a; + X ay, X€R/I;nI,. Since R/I;n I,(3,] = R/I;[a;] @ R/I,[a;] and
the number of fields between R/Ii[slj and R/I; is finite, then the number of
fields between R/I;Nl I,[a;] and R/I, Nl I, as well as between R/I; N1 I,(3,] and
R/I; N I, is finite. Therefore, since R/I; N I, is infinite, there exist
elements X;, X, of R/I; NI, such that R/I; N I,(3'] = R/I; N I,[a"], where a'
=3, +%; a,, @" = &, + X, a,. Since a', a" belong to R/I; N I,[a'], thena'-
a" = (X;-X,)a, is an element of R/I N Iy[a']. But X;-X, is in R/I; N I, = R/I;
@ R/I, and so X; - X, = Iy-r,, Wwith r; element of R/I;, therefore X;-X, is a
unit. Therefore a, is contained in R/I; N I,[(a'], hence a,' = a' - X;a, is in
R/I, N I,[a'], so R/I, N I,(a;, a,] = R/I; N I[a']). Applying finite induc-
n n
tion on n we get that R/ Ij[El,...,En] =g/ N Ij[é'], therefore S/(radR)S =
3=1 =

R/radR[a] fram which we get (radR) S + R[a] = S = IS + R[a]. So for every
Ij maximal ideal we have Ij. S/R[a) = (IjS+R[a])/R[a] = S/R[a] which by
Nakayama's lemma gives S = R[a].

THEOREM 4.4: let S be a finitely generated central separable R-algebra,
where R semilocal ring with maximal ideas I;,...,I, such that R/Ij infinite
for every j. Then S = R[a,b], for same a,b in S.

Proof. For every j, S/I :S is central separable over the field R/IJ (therefore
simple), andhencebySectlonI we have S/I S = R/1s [aJ, bj], with a; + IsS

J J

um.th/IS. As in Theorem 3. 3wecanslmI]s+R[a], b]] = S for every j=
n

1...,n. Also as in 3.5 S/(radR)S =@R/1j[5j,5j] = R/radR(a,,..., ay, by,---,
=

n
b,]. By Theorem 3.5 we get that Z = @R/ n1503a3] =R/n Ij('a’l,...,—an] =
=1
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n n
n Ij[E]. let b = bl+... _‘q‘ Then for every k, ay we have R/ (I Ij[g] C R/
j=1 j=1
n
n 15ab), ad3lb = Glegb = 3 @B RJ, where g is the unit
j=1 n
of kth summand. Therefore Ekiﬁcj is contained in R/ N Ij[e-:,f)], so i;k is
n j=1
contained in R/ 014 {a,b], and consequently for every k we have that R/radR
j=1
(3, B JR/radR(a,b]. Hence S/(radR)S = R/radR[a,b] with a = a + (radR)S, b =b +
(radR)S. So for every maximal ideal Ij of R we have IjS/R[a,b] = (IjS+R[a,b])
/R[a,b] = S/R[a,b] which gives S = R[a,b] and completes the proof.
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